复变函数论9-调和函数2-泊松积分公式与狄利克雷问题4:上半平面内狄利克雷问题的解

本文详细介绍了如何利用泊松积分公式解决上半平面内的狄利克雷问题。通过共形映射和调和函数的概念,推导出了解决此类问题的积分表达式,并给出了具体示例,包括电位分布问题的求解。
摘要由CSDN通过智能技术生成

四、上半平面内狄利克雷问题的解

为了求出在实轴上取已知值而在上半平面内调和的那个函数 u ( z ) u(z) u(z) 在点 z z z处之值.我们作出一个把上半平面 lm ⁡ ζ > 0 \operatorname{lm} \zeta>0 lmζ>0
共形映射成单位圆 ∣ w ∣ < 1 |w|<1 w<1 的分式线性变换

w = ζ − z ζ − z ˉ . w=\frac{\zeta-z}{\zeta-\bar{z}} . w=ζzˉζz.

因为这时点 z z z 被变成 w = 0 w=0 w=0, 所以根据平均值定理, 有

U ( 0 ) = 1 2 π ∫ 0 2 π U ( w ) d τ . U(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} U(w) \mathrm{d} \tau . U(0)=2π102πU(w)dτ.

其中 u [ ζ ( w ) ] = U ( w ) u[\zeta(w)]=U(w) u[ζ(w)]=U(w), 而 τ \tau τ 是单位圆周上点的鎘角:

e i r = t − z t − z ˉ . \mathrm{e}^{\mathrm{i} \mathrm{r}}=\frac{t-z}{t-\bar{z}} . eir=tzˉtz.

这里 t t t 在实轴 Im ⁡ ζ = 0 \operatorname{Im} \zeta=0 Imζ=0 上, 因为 (9.10) 把实轴 Im ⁡ ζ = 0 \operatorname{Im} \zeta=0 Imζ=0 变成单位圆周 ∣ w ∣ = 1 |w|=1 w=1.

在(9.12) 这个等式两端微分,我们得到

e i τ d τ = 2 y ( t − z ˉ ) 2   d t ( z = x + i y ) . \mathrm{e}^{\mathrm{i} \tau} \mathrm{d} \tau=\frac{2 y}{(t-\bar{z})^{2}} \mathrm{~d} t \quad(z=x+\mathrm{i} y) . eiτdτ=(tzˉ)22y dt(z=x+iy).

因此便有

d τ = 2 y   d t ( t − z ) ( t − z ˉ ) = 2 y   d t ( t − x ) 2 + y 2 . \mathrm{d} \tau=\frac{2 y \mathrm{~d} t}{(t-z)(t-\bar{z})}=\frac{2 y \mathrm{~d} t}{(t-x)^{2}+y^{2}} . dτ=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值