概率收敛、分布收敛、Lp收敛

首先要明确,这四种收敛都是随机变量序列对某个随机变量的收敛

一、依概率收敛

\lim_{n\to \infty} P(|X_{n}-X|\geq \varepsilon )=0

形象点说,就是在 n \to \infty 时,X_{n} 与 X 的差距的一次方趋近于 0

二、依分布收敛

\lim_{n\to \infty} P(|F_{n}(X)-F(X)|\geq \varepsilon )=0 对于 F_{n}(X) 上的连续点恒成立

依分布收敛是针对分布函数而言的,X_{n} 与 X 的分布函数在 n \to \infty 时几乎一样,但是X_{n} 与 X 并不不一定相关!

三、Lp收敛

\lim_{n\to \infty} P(|X_{n}-X|^p\geq \varepsilon )=0

形象点说,就是在 n \to \infty 时,X_{n} 与 X 的差距的 p 次方趋近于 0,显然 Lp 收敛比依概率收敛要强

©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页