解决显存被占满的问题

  1. 查看gpu上所有进程
fuser -v /dev/nvidia*
  1. 获取pid进程文件句柄数
lsof -p pid
  1. kill掉没用的程序
kill -9 pid

如果kill不掉程序可以使用管理员权限kill程序

sudo kill -9 pid
### 解决YOLO训练过程中的内存溢出问题 当遇到YOLO训练过程中占用过多RAM的问题时,可以采取多种策略来优化资源利用并确保模型能够顺利训练。 #### 减少批量大小 降低批处理尺寸是一种简单有效的方法。较小的批次意味着每次迭代所需的内存量更少。虽然这可能会稍微影响收敛速度,但在大多数情况下不会显著损害最终性能[^1]。 ```python # 修改配置文件或命令行参数以减少batch size train_batch_size = 8 # 原始可能是16或更高 ``` #### 使用混合精度训练 通过启用自动混合精度(AMP),可以在不牺牲太多准确性的情况下大幅减少显存消耗。这种方法允许网络在某些操作上使用较低位宽的数据类型,从而节省大量空间。 ```python from torch.cuda.amp import GradScaler, autocast scaler = GradScaler() for data in dataloader: optimizer.zero_grad() with autocast(): outputs = model(inputs) loss = criterion(outputs, labels) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() ``` #### 数据增强与预取 合理设置数据加载器的工作线程数以及应用高效的数据增强技术也能间接缓解内存压力。提前准备好下一批次所需的数据有助于保持GPU持续工作而不必等待CPU准备数据完成。 ```python dataloader = DataLoader( dataset, batch_size=train_batch_size, shuffle=True, num_workers=4, # 根据硬件调整此数值 pin_memory=True ) ``` #### 模型剪枝与量化 对于已经训练好的较大型号,考虑对其进行结构化剪枝或者权重量化。这些方法能够在几乎不影响推理质量的前提下极大地压缩模型体积,进而减轻部署阶段可能面临的存储和计算负担。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值