将单gpu的代码改为多gpu

本文介绍了如何在PyTorch中使用nn.DataParallel封装模型并将模型部署到多个GPU上,同时讨论了torch.nn.DataParallel与torch.nn.parallel.DistributedDataParallel之间的区别,尤其是在处理多GPU和batchsize时的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果有多个GPUs,可以使用nn.DataParallel封装模型,然后使用model.to(device)把模型放在GPUs上。

model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
  # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
  model = nn.DataParallel(model)

model.to(device)

如果有3个GPUs,batch size为30,则每个gpu batch 10个输入。

挖个坑:
看一下torch.nn.DataParallel和torch.nn.parallel.DistributedDataParallel的区别

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值