目标侦测:找到目标所在位置
图形识别:判断目标的类型
1、环境搭建
#a、conda 创建虚拟环境(最好都不要用base环境)
conda create -n yolov5 python==3.11
#b、创建好后激活虚拟环境
conda activate yolov5
#c.在创建好的虚拟环境中安装pytorch(不要安装最新的,其他版本都可以)
在线安装方法:
进入pytorch官网:https://pytorch.org/get-started/previous-versions/
复制要下载安装的版本:pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl
离线方法:
复制http下载路径,先下载下来一个文件,然后 pip install 这个文件
再执行下在线安装方法(安装另外两个包,torchvision和torchaudio)
测试环境是否正常:
idea创建工程,sdk选择虚拟环境——exist——conda安装环境下的文件夹下的envs的yolov5的python.exe
新建一个python文件,执行看是否正常
import torch
print(torch.__version__)
print(torch.cuda.is_available())) true环境ok,false环境不ok
2、yolov5大模型下载与测试(windows操作)
a、github搜索volov5: https://github.com/ultralytics/yolov5 下载下来
b、安装所需依赖:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple(-i后面是清华镜像)
由于在上个步骤已经按照pytorch,所以可以编辑requirements.txt,注释掉安装torch和torchvision,防止它卸载掉我们的版本重新安装
c、idea打开大模型,sdk选择conda创建的虚拟环境
模型测试
打开detect.py, run这个文件,
执行的结果会保存在runs——detect文件夹
3.数据标注与格式转换(windows操作)
a、准备一批图片(人跌倒)
b、标注工具
#下载labelme标注工具
pip install labelme(虚拟环境安装)
#启动1abelme标注工具
labelme, 然后就会打开一个软件客户端,使用labelme工具标注数据
c、数据标注完成后,安装labelme2yolo将数据格式转换为yolo格式
#安装数据格式转换工具
pip install labelme2yolo
#查看工具用法
labelme2yolo --help
//将标注好的数据集转为Yolo格式数据
cmd命令 labelme2yo1o --json_dir="C:/Users/Kr.Zh@ng/Pictures/dataset(标注好的图片文件夹) --val 分成(训练、验证)
执行后,就会生成一个文件夹yolodata文件夹,有一个dataset.yaml文件
4.使用yolov5训练自己的数据集
配置train.py完成自定义数据集训练:
parser.add_argunent("--data",type=str,default=ROOT1"data/dataset.yaml'help="dataset.yanl path")
当训练出现报错解决方案:
方案一
设置git可执行文件的路径:
1.将git可执行文件所在的目录添加到系统的$PATH环境变量中。
2.通过设置$GIT_PYTHON_GIT_EXECUTABLE环境变量来指定git可执行文件的完整路径。
3.通过调用git.refresh()显式设置git可执行文件的路径。
$GIT_PYTHON_GIT_EXECUTABLE环境变量:
打开终端:win+r输入cmd
输入以下指令:
例如,如果你知道git可执行文件的路径是/usr/bin/git,你可以在终端中运行以下命令来设置
科技
| - T E C H
export GIT_PYTHON_GIT_EXECUTABLE=/usr/bin/git
方案二
在Python代码中设置:
os.environ["GIT_PYTHON_REFRESH"] = "quiet"
09-28
326

06-05
3526
