引言
垃圾分类问题在现代社会中的重要性日益增长,尤其在智能城市建设、环境保护及可持续发展方面。随着人工智能技术的飞速发展,尤其是深度学习技术的应用,目标检测任务也得到了越来越多的关注。通过深度学习,特别是卷积神经网络(CNN)的强大能力,我们能够在视觉数据中自动识别并分类不同类型的垃圾。
Kaggle提供的TACO(Trash Annotations in Context)数据集为垃圾检测与分类提供了一个非常好的平台。TACO数据集包含了五个主要类别的垃圾,例如纸袋、瓶子、瓶盖、纸杯和塑料袋,广泛用于垃圾分类、目标检测等研究。本文将基于YOLOv10目标检测模型,结合TACO数据集,设计并实现一个垃圾分类系统。通过搭建一个UI界面,展示如何使用YOLOv10进行垃圾检测与分类,帮助开发者和研究者深入了解深度学习在垃圾分类中的应用。
1. Kaggle TACO数据集介绍
数据集概述
Kaggle TACO(Trash Annotations in Context)数据集是一个用于垃圾分类和目标检测的数据集。它包括了不同类型的垃圾图像,这些垃圾图像是在实际环境中拍摄的。数据集中提供了标注信息,包括图像中垃圾的种类、位置等数据。TACO数据集共包含5个类别的垃圾,分别是: