多模态 | 基于GNN的多模态情感识别技术COGMEN项目实现,代码分析,并训练自己的数据集,后期修改网络,运行全部过程以及经验总结

本文详细介绍了基于GNN的多模态情感识别技术COGMEN的实现过程,包括环境设置、数据预处理、训练、验证以及如何使用自己的数据集进行训练。通过实验,展示了训练效果和验证结果,并提供了代码分析和数据处理的指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

COGMEN: COntextualized GNN based Multimodal Emotion recognitioN

COGMEN: 基于GNN的多模态情感识别技术

Paper:  https://arxiv.org/abs/2205.02455 

源代码GitHub - Exploration-Lab/COGMEN

论文翻译及总结可参考我另外一篇博文:多模态 |COGMEN: COntextualized GNN based Multimodal Emotion recognitioN论文详解_夏天|여름이다的博客-CSDN博客

环境设置

  • Pytorch
  • python3.7版本及以上

如果安装GPU版本,cuda版本需要11.7及以上

  • pytorch_geometric

Installation — pytorch_geometric documentation (pytorch-geometric.readthedocs.io)

conmet.ml

  •  SBERT

Install SBERT

 对于已经有pytorch的情况,我只安装了以下命令

pip install comet_ml --upgrade #使用默认的 Python,comet_ml升级到最新版本
pip install torch_geometric
pip install -U sentence-transformers

数据预处理(第一次运行)

数据集:iemocap_4

对数据集进行处理,运行

python preprocess.py --dataset="iemocap_4"

运行后,结果如图

开始训练

python train.py --dataset="iemocap_4" --modalities="atv" --from_begin --epochs=55

训练效果如图

训练后,生成model_checkpoints目录,如下

内容概要:该文档详细介绍了基于MATLAB实现的图神经网络GNN)在故障诊断领域的项目实例。项目背景在于工业自动化带来设备复杂性增加后,传统的故障诊断手段面临诸多挑战,图神经网络以其独特的优势能够更好地处理图结构数据,实现更高效精准的故障定位与多传感器数据融合。该项目的核心目标是开发一种能够通过图结构建模运用GNN推理技术进行精确故障预测、加快诊断速度和降低故障发生几率的系统,最终提高工业生产的稳定性与安全性。 文中依次论述了项目的各个组成部分,包括项目的特点与创新能力(如基于图结构的建模、多模态故障诊断等)、面临的挑战(例如数据质量不高和训练样本不足)及其对应解决方案、预期达到的效果以及对未来发展的展望,还有详尽列出了从准备开发环境直到最后成果发布的整个软件开发生命周期中的关键技术点及其实现细节。且特别指出了该项目的应用场景涵盖多个行业,如智能制造、交通物流乃至航空业。 最后附带了一部分内容代码样例以展现具体的操作过程技术实现方法。 适合人群:对机器学习特别是图神经网络有兴趣的研究人员和工程师;正在从事相关行业的技术人员如工业自动化控制师或机械工程师;希望了解如何应用人工智能解决特定领域问题的数据科学家们;以及想要拓展技能组合对工业物联网感兴趣的大学生或研究生。 使用场景及目标:①帮助研究人员和技术团队理解如何将理论知识转化为实用产品;②为企业IT部门提供了一个成熟的参考案例来制定自身的智能化转型升级战略规划;③助力开发者深入探索MATLAB环境下GNN的实际工程化部署;④促使教育机构完善课程设计使之跟得上时代发展趋势。 阅读建议:鉴于该文件既包含广泛的理论分析又涵盖了细致入微的技术实施方案,初学者应当重点关注基础知识普及的部分,熟悉有关概念后再过渡到高级技巧部分。对于有一定经验的人士来说,则可以侧重阅读那些关于技术创新点及解决实际问题方面的讨论。此外,在研读过程中建议参照提供的源代码片段做同步实验操作以便加深印象巩固所学知识。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天|여름이다

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值