多模态 | 基于GNN的多模态情感识别技术COGMEN项目实现,代码分析,并训练自己的数据集,后期修改网络,运行全部过程以及经验总结

本文详细介绍了基于GNN的多模态情感识别技术COGMEN的实现过程,包括环境设置、数据预处理、训练、验证以及如何使用自己的数据集进行训练。通过实验,展示了训练效果和验证结果,并提供了代码分析和数据处理的指导。
摘要由CSDN通过智能技术生成

COGMEN: COntextualized GNN based Multimodal Emotion recognitioN

COGMEN: 基于GNN的多模态情感识别技术

Paper:  https://arxiv.org/abs/2205.02455 

源代码GitHub - Exploration-Lab/COGMEN

论文翻译及总结可参考我另外一篇博文:多模态 |COGMEN: COntextualized GNN based Multimodal Emotion recognitioN论文详解_夏天|여름이다的博客-CSDN博客

环境设置

  • Pytorch
  • python3.7版本及以上

如果安装GPU版本,cuda版本需要11.7及以上

  • pytorch_geometric

Installation — pytorch_geometric documentation (pytorch-geometric.readthedocs.io)

conmet.ml

  •  SBERT

Install SBERT

 对于已经有pytorch的情况,我只安装了以下命令

pip install comet_ml --upgrade #使用默认的 Python,comet_ml升级到最新版本
pip install torch_geometric
pip install -U sentence-transformers

数据预处理(第一次运行)

数据集:iemocap_4

对数据集进行处理,运行

python preprocess.py --dataset="iemocap_4"

运行后,结果如图

开始训练

python train.py --dataset="iemocap_4" --modalities="atv" --from_begin --epochs=55

训练效果如图

训练后,生成model_checkpoints目录,如下

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天|여름이다

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值