联合概率数据互联算法(JPDA)

PDA算法在目标密集环境中存在误跟问题,可能导致目标丢失或跟踪发散。相比之下,JPDA算法无需先验信息,在杂波环境下能更有效地进行多目标跟踪,被认为是理想的跟踪方法之一。JPDA的基础是考虑关联门内回波的不同关联概率。
摘要由CSDN通过智能技术生成

PDA算法的缺点在于目标密集环境中,易产生误跟,即在跟踪的过程中,如果同一领域中有另一目标的测量值进入关联门,并连续出现在多个采样周期内,这个目标就表现为一个连续干扰,会使得目标跟丢或发散。而联合概率数据互联算法(JPDA)不需要任何关于目标和杂波的先验信息。JPDA算法是公认的在杂波环境下多目标进行跟踪的最理想方法之一

其基本思想在于认为落入目标t的关联门内的有效回波都有可能来自目标t,只是其关联概率不同

步骤流程:

 PS:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值