中介分析的妙用!看国内学者如何利用公共数据库发表BMJ顶刊论文

9.23-24 郑老师“量表与中介研究数据分析”课程,欢迎报名

“量表与中介研究数据分析”9.23-24直播课,发文后退款

中介分析

(mediation analysis)

在某个暴露因素(X)到结局(Y)之间的关联中,如果X是通过某个中间因素(M)而对Y产生影响,则称M这个中间因素为中介变量,对于潜在中介变量起到多大中介作用的分析即中介分析。中介分析试图探索暴露到结局之间关系的内部原理,逐渐受到越来越多的医学研究者关注。

传统上针对中介效应的检验是将总效应分解为直接效应和间接效应,对其逐一进行检验,即逐步检验回归系数法;但由于统计学把握度较低、遮掩模型中难以检验出中介效应等问题,目前更多的使用Sobel检验法、Bootstrap法、乘积分布法等方法对中介效应进行估计。

需要指出的是,中介分析属于流行病学理论框架中因果推断的范畴,正确的实施和理解中介分析,需要研究者充分了解所研究的暴露因素到结局逻辑链条上其他相关因素的性质,准确判断混杂、交互等概念。

目前中介分析相关的方法学仍处于快速发展中,一些新的理论与方法可帮助研究者在更广的研究问题和数据框架下对中介效应进行分析。

64c034f872b788f2f93af3d74c250d0d.png

2021年,我国学者在BMJ发表的基于大型人群队列研究的数据分析(DOI:10.1136/bmj.n604)发现,健康生活方式在社会经济地位与全因死亡之间起到的中介作用较小[1]

6083386cd798fee68289e9baf35b28b7.jpeg

既往研究认为,社会经济地位与全因死亡之间的关联很大程度上是由健康生活方式介导的。然而,既往研究中对社会经济地位和健康生活方式的定义大多只考虑了单一因素,如收入、资产、职业、教育水平、吸烟、饮酒、身体活动等,未能将这些因素综合起来进行考察;数据分析中未能充分考虑社会经济地位与健康生活方式的交互作用;缺乏在不同年龄、性别、种族等人群亚组中进行分析。由于这些缺陷,健康生活方式在社会经济地位与全因死亡的关联中起到多大的中介作用尚不清楚。

a303189a6370f672c4e73e2a0ed63f9c.png

本研究利用2项著名的大型人群队列研究,美国国家健康营养调查(US NHANES)和英国生物样本库(UK Biobank),分别入组4万余名和近40万名来自美国和英国的一般人群开展数据分析。

研究中,通过隐变量分析综合家庭收入、职业、受教育程度和健康保险(仅在美国人群中分析)情况将研究对象的社会经济地位划分为低、中、高三组。研究中对于健康生活方式的划分使用了类似的思路,综合研究对象吸烟、饮酒、身体活动和饮食情况进行判断。

a123092389246d073e0a60e9f9e867cd.png

研究主要结局为全因死亡、心血管疾病死亡和新发心血管疾病。除了上述主要研究因素和结局,研究者还从数据库中提取了年龄、性别、婚姻状态、所在位置、种族、母语、合并疾病等情况作为协变量进行分析。健康生活方式起到的介导作用使用中介分析方法进行探究。

分析结果显示,在校正协变量后,美国低社会经济地位人群相比于高社会经济地位人群全因死亡风险增加113%(HR = 2.13,95%置信区间1.90至2.38),英国低社会经济地位人群全因死亡风险增加96%(HR = 1.96,95%置信区间1.87至2.06),对于其他结局也有类似的发现。

a9286990567a9b79ec33e4432f8e06b4.png

美国人群中,健康生活方式可解释12.3%(95%置信区间10.7%至13.9%)的社会经济地位与全因死亡之间的关联,这一中介作用比例在英国人群和其他结局中更小,大致在5%左右。

此外,研究还发现在英国人群中,社会经济地位与健康生活方式对全因死亡的影响存在交互作用,即不良生活方式引起的全因死亡风险增加,在低社会经济地位的人群中更加严重。

表 健康生活方式对社会经济地位与全因死亡关联的中介作用(原文表2)

6f7ab55808399a1c03d47cbde33fea02.png

f2df3d0aa8499fdd36bfae6dbbaaa4a6.png

b2876de8e50e7ec124050cf3c4c12f57.png

图 健康生活方式与社会经济地位对全因死亡影响的潜在交互作用(原文图1)

上述研究结果提示,健康生活方式只能解释一小部分社会经济地位与不良健康结局之间的关联,因此,仅仅在人群中推行健康生活方式不足以大幅改善社会经济地位造成的健康不平等。此外,健康生活方式与社会经济地位的交互作用提示,在低经济社会地位的人群中推行健康生活方式获益更大。这些发现对人群健康实践具有重要意义。

闲来郑语:中介分析

  1. 这篇文章探讨了社会经济地位对人群死亡的影响,本身这个话题也没有太大的新鲜度,所以作者于是加了个中级分析,一下子盘活了研究话题。

  2. 其实中介分析更多的时候就是用来点缀,是增量的产品。所以现在很多论文也越来越多使用了中介分析。

  3. 但是,也当心误用中介分析!我看很多人使用中介分析因果关系都没有弄清楚下使用,完全不符合一般的因果逻辑。

  4. 但怎么说,我们再设计课题的时候,不妨都考虑考虑中介分析

文献来源

Zhang YB, Chen C, Pan XF, et al. Associations of healthy lifestyle and socioeconomic status with mortality and incident cardiovascular disease: two prospective cohort studies. BMJ. Apr 14 2021;373:n604. doi:10.1136/bmj.n604

最后,欢迎参加郑老师9月23-24两日“量表与中介研究数据分析”直播课,全程带你如何开展中介分析。

“量表与中介研究数据分析”9.23-24直播课,发文后退款


本公众提供各种科研服务了!

一、课程培训

2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、nhanes、孟德尔随机化等10门课。如果您有需求,不妨点击查看:

发表文章后退款!2023年郑老师团队多门科研统计直播课程,欢迎报名

二、统计服务

为团队发展,我们将与各位朋友合作共赢,本团队将开展统计分析服务,帮忙进行临床科研。欢迎了解详情:

医学统计服务| 医公共数据库论文一对一指导

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值