孟德尔随机化论文大数据分析!全球发文2000+,中国学者占60%

本文介绍了2024年孟德尔随机化方法高级班的开设情况,强调了该领域在临床科研中的崛起,特别是在中国的发展。文章详细展示了全球和中国的发文趋势,以及热门期刊和研究机构的表现。同时,推荐了顶级论文并提及了相关课程和数据分析服务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎报名2024年孟德尔随机化方法高级班课程!

孟德尔随机化高级班2024年1月20-21日开课,欢迎报名

如果说最近临床科研领域中最火的是什么,除了chatGPT,应该就是孟德尔随机化了。利用公开数据库就能轻装上阵写文章,甚至是高质量的论文。比临床更简单、发文速度更快!

“孟德尔随机化研究”能这么火、这么受临床医生青睐,一是:只需公共数据库分析、0实验验证、性价比高;二是:选题方向与临床问题、流行病学更相近、更适合临床医生去研究;三是:MR分析目前更容易发高分。所以别的临床研究人员都在抢发,甚至1个月连发2篇10分+文章了,你还在犹豫吗?此时不上车更待何时呀!

以下数据分析结论是基于PubMed文献数据库,以Mendelian Randomization为关键词通过citexs数据分析平台得出,仅供参考哦。

孟德尔随机化的总体发文趋势

以下是不完全统计数字!

通过Pubmed数据库进行检索,过去10年全球共发表了8261篇有关孟德尔随机化方法的文章,发文量逐年攀登,2019年达最大增速53.9%,2023年达发文量顶峰2363篇,仅2023年就占总发文量28.61%

81b7db446fb656456f107ea35a9695cd.png

国内孟德尔随机化的发文趋势

2023年,中国在孟德尔随机化领域名列前茅(810篇),占比62.56%,远超英美。值得一提的是,在全球发文量排名前20的机构中,中国就占12个。

8b6f3f0c6b46e2ef671c7d827700b1e9.png

刊载量期刊排行

2023年,刊载文献量排名前十的期刊如下图,其中刊载孟德尔随机化论文最多的期刊是Research Square(265篇);medRxiv 位居第二,刊载文献量121篇;Frontiers in Immunology位居第三,刊载文献量63篇。

cd5e735b53b39b2f70e781fb7927e20f.png

研究机构发文量排行

2023年,中国在孟德尔随机化领域发文量为第一, 有1661篇(70.29%),美国(627篇,26.53%)和英国(410篇,17.35%)位居第二和第三。

其中发文量排名前三的研究机构分别是其中布里斯托大学(UK)和中南大学湘雅医院(CHN)发文量占据前两名,分别发表了74篇和63篇,哈佛大学(UK)发表了59篇,位于第三名。

889bceb7c2099f93363f9603d5fbbecc.png

孟德尔随机化顶级论文推荐

综合文献被引用数、发表时间、年份、影响因子等条件,大数据分析平台为大家推荐出10篇文献,感兴趣的同学可以自行搜索进行阅读,必定能有所收获!

b397828883a87451ee2ee14189df1111.png

0999703ae2a56c4c7cb18d2cd2116287.png

2023年度热点关键词云图

最后,为大家送上2022年度孟德尔随机化热点关键词云图,出现频次前5的关键词分别是:causality,genome-wide association study,gwas,genetics,covid-19.

1e66a5233496c832a57264ff642b6bc4.png


本公众提供各种科研服务了!

一、课程培训

2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、nhanes、孟德尔随机化等10余门课。如果您有需求,不妨点击查看:

发文后退款:2024-2025年科研统计课程介绍

二、数据分析服务

浙江中医药大学郑老师团队接单各项医学研究数据分析的服务,提供高质量统计分析报告。有兴趣了解一下详情:

课题、论文、毕业数据分析 

 临床试验设计与分析 公共数据库挖掘与统计

<think>嗯,用户想解决孟德尔随机化分析中数据无法直接提取的问题。首先,我得回忆一下孟德尔随机化的基本流程。根据引用[1],工具变量不需要自己收集,而是通过GWAS数据合并来的。所以数据提取可能涉及从公开数据库获取GWAS和eQTL数据。 用户提到的错误可能是TwoSampleMR包的API请求过多导致的429错误,引用[3]提到这个情况。解决方法可能需要调整请求频率或使用本地数据。比如使用本地存储的GWAS数据,或者设置延迟,比如time.sleep()来避免频繁请求。 另外,引用[4]提到TWAS分析需要读入GWAS和eQTL数据,可能用户需要的数据格式转换问题。比如将下载的数据整理成适合TwoSampleMR包的格式,比如使用format_data函数转换。 还有,用户可能不知道如何找到合适的公开数据库,比如IEU OpenGWAS、MR-Base等,这些地方可以直接获取数据,避免手动提取的问题。同时,预处理步骤也很重要,比如去除连锁不平衡、检查弱工具变量等,确保数据质量。 可能用户遇到的问题还包括数据匹配,比如暴露和结局的SNP需要一致,这时候需要进行SNP匹配和补全,使用harmonise_data函数处理。如果数据量太大,可以考虑分批次处理或者使用并行计算。 总之,解决方案应该包括使用公开数据库、调整API请求策略、数据格式转换、预处理和SNP协调这几个方面。需要一步步引导用户,从数据获取到处理,确保他们能顺利提取所需的数据进行后续分析。</think>### 孟德尔随机化分析中数据提取问题的解决方案 #### 一、问题本质 孟德尔随机化分析需要GWAS汇总数据和eQTL数据作为输入,但原始数据往往无法直接获取[^1]。数据提取障碍主要来自: 1. API请求限制(如HTTP 429错误)[^3] 2. 数据格式不兼容 3. 多源数据协调困难 #### 二、分步解决方法 **第一步:GWAS数据获取** 1. 优先使用MR-Base平台(https://gwas.mrcieu.ac.uk/)的预格式化数据 2. 通过TwoSampleMR包调用本地存储的GWAS数据: ```r exposure_dat <- extract_instruments("ieu-a-2") outcome_dat <- extract_outcome_data(exposure_dat$SNP, "ieu-a-7") ``` **第二步:API请求优化** 1. 添加请求间隔控制: ```r Sys.sleep(5) # 设置5秒间隔 mr_results <- mr(exposure_dat, outcome_dat) ``` 2. 使用本地缓存: ```r saveRDS(exposure_dat, "local_cache.rds") ``` **第三步:数据格式转换** 对于非标准格式数据,使用格式转换函数: ```r formatted_data <- format_data( raw_data, type = "exposure", snp_col = "rsID", beta_col = "BETA", se_col = "SE", effect_allele_col = "ALT" ) ``` **第四步:预处理增强** 1. 连锁不平衡过滤: ```r clumped_data <- clump_data(exposure_dat) ``` 2. 工具变量强度检验: ```r F_stat <- (exposure_dat$beta.exposure / exposure_dat$se.exposure)^2 ``` #### 三、典型错误处理 **HTTP 429错误应对方案:** 1. 减少并发请求量 2. 使用离线模式(需预先下载数据) 3. 联系数据库管理员申请API密钥 #### 四、辅助工具推荐 | 工具名称 | 功能特点 | 访问地址 | |----------------|----------------------------|----------------------------| | MR-Base | 预格式化GWAS数据集 | https://gwas.mrcieu.ac.uk/ | | PhenoScanner | SNP表型关联查询 | http://www.phenoscanner.medschl.cam.ac.uk/ | | LDlink | 连锁不平衡分析 | https://ldlink.nci.nih.gov/| #### 五、质量保障措施 1. 执行异质性检验: ```r mr_heterogeneity(res) ``` 2. 水平多效性检验: ```r mr_pleiotropy_test(res) ``` 3. 留一法敏感性分析: ```r leaveoneout_res <- mr_leaveoneout(dat) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值