仅CHARLS已经不够了!联合其他老年数据库是趋势 | CHARLS & CLHLS & CFPS公共数据库周报...

欢迎报名2024年郑老师团队课程课程!

  郑老师科研统计培训,包括临床数据、公共数据分析课程,欢迎报名

CHARLS公共数据库

CHARLS数据库简介中国健康与养老追踪调查(China Health and Retirement LongitudinalStudy,CHARLS)是一项持续的纵向调查,旨在调查中国45岁及以上中老年人社会、经济和健康状况。基线调查于2011年开展,共17708名参与者,每两年追踪一次,目前已有5期数据2011(wave 1)、2013(wave2)、2015(wave 3)以及2018(wave 4),2020(wave 5)。

本周CHARLS文献预览

  • 对PubMed数据库搜索发现,本周发表9篇charls论文。

  • 对CNKI数据库搜索发现,本周发表0篇charls论文。

  • 对中华医学杂志数据库搜索发现,本周发表1篇charls论文。

一、PubMed数据库

通过PubMed数据库“CHARLS”检索发现,1.17-1.23共发表9篇相关主题论文,其中共2篇医学1区,4篇医学2区文章,部分文章介绍如下。

1.中国学者文章介绍(一)

46c4ee371f5fb70121eafaf8a38dee4e.png

标题:三个前瞻性队列中虚弱和心血管疾病发生率的变化

研究目的:先前的研究发现,虚弱是心血管疾病(CVD)的重要危险因素。然而,以前的研究只关注基线虚弱状态,没有考虑随访期间虚弱状态的变化。本研究的目的是调查虚弱状态变化与事件 CVD 的关联。

方法: 本研究使用了三个前瞻性队列的数据:中国健康与退休纵向研究(CHARLS)、英国老龄化纵向研究(ELSA)和健康与退休研究(HRS)。虚弱状态通过 Rockwood 虚弱指数进行评估,并分为健壮、虚弱前或虚弱。通过基线时的虚弱状态和基线后两年的第二次调查来评估虚弱状态的变化。心血管疾病是通过自我报告的医生诊断的心脏病(包括心绞痛、心脏病发作、充血性心力衰竭和其他心脏问题)或中风来确定的。调整潜在混杂因素后,采用Cox比例风险模型计算风险比(HR)和95%置信区间(95%CI)。

结果:根据纳入和排除标准,共有7116名来自CHARLS的参与者(女性:48.6%,平均年龄:57.4岁)、5303名来自ELSA(女性:57.7%,平均年龄:63.7岁)和7266名来自HRS(女性:64.9%,平均年龄=65.1岁)。CHARLS的中位随访期为5.0年,ELSA为10.7年,HRS为9.5年。与稳定的健壮参与者相比,进展到虚弱前期或虚弱状态的健壮受试者发生心血管疾病的风险增加(CHARLS,HR=1.84,95%CI:1.54-2.21;ELSA,HR=1.53,95%CI:1.25-1.86;HRS,HR=1.59,95%CI:1.31-1.92)。相反,与稳定的虚弱参与者相比,恢复到健壮或虚弱前状态的虚弱参与者发生心血管疾病的风险降低(CHARLS,HR=0.62,95%CI:0.47-0.81;ELSA,HR=0.49,95%CI:0.34-0.69;HRS,HR0.70,95%CI:0.55-0.89)。与稳定的虚弱前期参与者相比,在恢复到健壮状态的虚弱前期受试者中也观察到心血管疾病发生风险降低(CHARLS,HR=0.66,95%CI:0.52-0.83;ELSA,HR=0.65,95%CI:0.49-0.85;HRS,HR=771,95%CI:0.56-0.91)。

结论虚弱状态的不同变化与不同的心血管疾病风险相关。虚弱状态的进展会增加 CVD 事件风险,而虚弱状态的恢复会降低 CVD 事件风险。

e5b0387b7c2b883d6625ea24f87ab0cc.png

2.中国学者文章介绍(二)

abb735bad6a280cb818a791b74671c00.png

标题:自我和访谈者报告的与认知能力下降和痴呆相关的认知问题:两项前瞻性研究的结果

研究目的:  关于访谈者报告的认知问题 (ICP) 与年龄相关认知能力下降的关联知之甚少。我们旨在在两项前瞻性队列研究中调查ICP的独立关联以及ICP和自我报告的认知问题(SCP)与随后的认知能力下降和痴呆的综合关联。

方法:我们纳入了10,976名中国人(年龄=57.7±8.7)和40,499名欧洲痴呆成年人(年龄=64.6±9.4)来自中国健康与退休纵向研究(CHARLS)和欧洲健康、老龄化和退休调查(SHARE)。自评记忆(5 分制)和访谈者评定的要求澄清频率(6 分

### 数据清洗概述 数据清洗是数据分析过程中至关重要的一步,旨在提高数据质量并确保后续分析的有效性和准确性。对于CHARLS数据库中的老年人群数据,可以采用多种方法来清理和准备这些数据。 #### 导入必要的库 为了有效地处理CHARLS数据库中的数据,首先需要导入一些常用的Python库: ```python import pandas as pd import numpy as np from sklearn.impute import SimpleImputer ``` #### 加载数据集 假设已经下载了CHARLS数据库的相关文件,并将其保存为CSV格式,则可以通过如下方式加载数据[^1]: ```python data = pd.read_csv('path_to_charls_data.csv') ``` #### 处理缺失值 在实际应用中,CHARLS数据库可能存在大量缺失值的情况。针对这种情况,可以选择删除含有过多缺失值的记录或列,也可以通过插补法填补缺失值。这里展示一种简单的均值填充策略: ```python imputer = SimpleImputer(strategy='mean') # 使用平均数填充数值型特征 cleaned_numeric_data = imputer.fit_transform(data.select_dtypes(include=[np.number])) # 对于分类变量,可以用众数填充 mode_imputer = SimpleImputer(strategy="most_frequent") cleaned_categorical_data = mode_imputer.fit_transform(data.select_dtypes(exclude=[np.number])) ``` #### 去除重复项 有时,在同一个调查对象的不同访问时间点可能会存在完全相同的记录。因此,去除冗余条目也是必不可少的操作之一: ```python unique_data = data.drop_duplicates() ``` #### 统一日期格式 如果涉及到出生年份或其他时间戳字段,应该统一其表示形式以便更好地计算年龄等指标: ```python data['birth_year'] = pd.to_datetime(data['birth_date']).dt.year current_year = datetime.now().year data['age'] = current_year - data['birth_year'] ``` #### 过滤特定年龄段人群 最后,可以根据研究需求筛选出符合条件的老年群体样本集合: ```python elderly_population = data[data['age'] >= 60] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值