Zstats风暴统计教程(9):生存分析方法

本篇是风暴统计平台教程系列的第九章,将详细介绍生存分析模块各功能。

生存分析方法模块包含的功能有:

  • 生存曲线

  • Cox比例风险模型(批量单因素、多因素、逐步回归法)

  • Cox回归森林图(回归结果可视化,自动生成森林图)

下面我们就对各功能展开详细介绍。

图片

01

生存曲线

生存曲线是对生存过程的一种描述。平台的操作只需选入生存结局变量、生存时间变量。

而生存曲线分组变量,可以选填。无分组变量时,将会描述全人群的生存状况;选入分组变量后,则会对不同分组下人群的生存状况进行描述。

KM曲线部分除了图像,还提供了其他两个重要信息表:

①风险表

在每个时间点仍处于研究中的受试者数量(包括尚未发生事件(如死亡)的受试者、尚未被删失的受试者)。随着时间推移,受试发生事件/被删失,人数会减少。

主要起到描述的作用,通过调整"坐标轴与标签设置"——"x轴间隔",展示的信息会更加详细。

②中位生存时间表

  • N:样本量,示例数据中包括女性790人、男性1042人;

  • Events:事件数,其中女性发生了201个研究关注的阳性事件、男性发生66个;

  • Median(95%CI):中位生存时间及95%置信区间,代表恰有50%受试者存活的时间。这里结果显示男性出现了NA,是因为一直到随访结束,男性群体的存活人数一直大于50%,导致结果无法估算。

  • Rate/1000(person-years):每1000人年的时间率

  • Log-rank P value:两组间生存时间的差异比较,P<0.001,表明性别对生存时间有统计学显著影响。

平台提供了多种中位生存时间计算方法,结果上近似,推荐使用log法,最常用且表现良好。

  • log:对数转换法

  • log-log:双对数转换法

  • plain:原始尺度法

  • logit:logit转换法

  • arcsin:反正弦平方根转换

KM曲线的绘制与结果解读介绍完了,我们再简单讲一下左侧提供的一系列细节调整框。

这里推荐大家绘图时多做尝试,可以对每个参数有个了解。这里主要介绍一下"绘制累计率曲线"参数,就可以得到累计发生率曲线。

KM曲线与累计发生率曲线有何区别?

  • KM曲线从1开始(100%生存率),随着事件的发生而逐步下降,主要关注生存率,适用于没有竞争风险或竞争风险不重要的情况。

  • 累计发生率曲线从0开始,随着特定事件的发生而逐步上升,关注特定事件的累积发生率,适用于存在竞争风险的情况。

02

Cox比例风险模型

这里选入研究的生存结局变量、生存时间变量、自变量。

需要注意的是,因变量必须为二分类,最好以1代表阳性事件(发生结局),0代表对照组(未发生结局)。如果以其他数字赋值,也可以在绿色选框(见下方图示)中勾选对应的数字。

其次,选择自变量的筛选方式,包括P阈值,回归方法。

图片

P阈值决定了单因素分析时,P值小于多少会进入多因素回归。一般为0.05,当进入多因素回归的变量过少时,也可以放宽要求,0.1,0.2也是可以的。

回归方法大致有三类,先单后多法,逐步回归法,根据P<0.05筛选。

  • 先单后多法(是否开展逐步回归选"否"),根据单因素回归的P阈值限制变量进入多因素模型。当P阈值选择不限制时,单因素的全部变量进入多因素回归。

  • 逐步回归法,分为双向、向前、向后。对符合P阈值要求的变量开展逐步回归。

  • 根据P<0.05筛选,本质上也是一种逐步回归,可以保证最终多因素模型中的每个变量P<0.05。

为什么选择逐步回归?

①自动化特征选择:在自变量数量较多的情况下,逐步回归能够高效地筛选出对因变量有显著影响的特征,减少人为选择的主观性。

②处理多重共线性:通过选择变量组合,逐步回归有助于减少自变量之间的多重共线性问题。

③提高模型解释性:通过剔除不显著的变量,模型变得更加简洁,便于解释和理解。

④防止过拟合:通过限制自变量数量,逐步回归有助于降低模型的复杂度,减少过拟合风险。

不过,逐步回归更推荐用在构建预测模型研究中,常见的影响因素研究,使用先单后多就够了。

完成选择后,就得到我们单因素与多因素分析的结果了。

结果参数说明:

①β:回归系数,对应SPSS输出结果b值

②S.E:回归系数的抽样误差,即标准误

③Z:是各个回归系数进行假设检验的统计量,对应SPSS输出结果瓦尔德卡方值(wald=Z平方)

④P:小于0.05,说明自变量与因变量回归关系成立。

⑤HR(95%CI):代表回归系数及95%置信区间。

结果解读:

输出结果中,我们主要关注回归P值与HR(95%CI)。P<0.05的前提下,HR值大于1,提示自变量是阳性事件发生的促进因素;HR值小于1,提示暴露因素是阳性事件的阻碍因素。

以本例多因素回归结果为例,协变量性别中P<0.001,HR=0.29。代表男性人群发生结局的风险是女性群体的约0.29倍。

03

Cox回归森林图

这里提供了Cox回归结果的单因素、多因素森林图,对三线表结果增加了可视化转换。

左侧还设置了对应一系列菜单栏,可以对图形的各个方面进行自定义调整。

点估计与置信区间设置、其他颜色设置,主要是对图像显示内容与各部分样式进行修改,鼓励大家多尝试进行了解。

坐标轴与标签设置,这里重点标注了2个地方,大家可以关注一下。

  • 字号,当我们的森林图因为变量过多而显示不完全时,可以通过调整字号大小,来使图像显示完整。

  • X轴设置,当因为置信区间过宽或过窄,导致图像中的点估计与参考线显示不全面时,可以通过限制x轴范围或者进行转换,使图像显示更加匀称美观。

最后,可以将编辑好的森林图下载下来,支持pdf、jpeg、pnd、tiff格式,推荐下载pdf格式,可以对图像中的文字进行编辑。

温馨提示:如果下载的图像显示不完全,可以将曲线页面由A4调整为自定义,设置合适的长和宽之后再进行下载。

图片

以上就是关于风暴统计平台Cox回归方法模块的详细教程。

下篇预告:Zstats风暴统计教程(10):Cox回归控制混杂偏倚


图片

图片

郑重声明

Zstats-AI 平台

√浙中医大统计老师郑卫军主持

√ 基于R语言软件开发

√ 免费使用,无需注册直接使用

√ 一键生成发表级图表

www.medsta.cn/software

(电脑端浏览器打开)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值