零代码搞定!训练+验证,完美复现一篇“预测模型”SCI论文的结果

Logistic构建临床预测模型案例复现系列主要以一篇基于logistic回归构建预测模型的文章为案例,从构建预测模型——验证模型,包括了随机数据拆分、②基线描述、③筛选预测因子、④绘制列线图、⑤绘制ROC曲线并计算AUC值、⑥HL检验、⑦绘制校准曲线、⑧绘制DCA曲线,基本涵盖了Logistic构建预测模型的全过程。

今天采用郑老师风暴统计平台进行零代码实现!


案例文献是一篇基于SEER公共数据库的一项回顾性研究,旨在开发和验证列线图以预测脑转移的非小细胞肺癌患者早期死亡。

1cca10e27689b9a4b75db08cdbd15aa3.jpeg

背景:在非小细胞肺癌(NSCLC)的整个病程中,很多患者会出现预后差、死亡率高的脑转移(BM)。然而,很少有模型能预测有脑转移的NSCLC患者的早期死亡(ED)。我们旨在开发列线图来预测NSCLC脑转移患者ED。

方法:从监测、流行病学和最终结果(SEER)数据库中选取了2010年至2015年间患有BM的NSCLC患者。纳入标准如下:(I)患者经病理诊断为NSCLC;(II)患者患有BM。患者按7:3的比例随机分为两组,分别为训练组和验证组。采用单因素和多因素Logistic回归方法来确定伴有BM的NSCLC患者发生ED的危险因素。建立了两个列线图,并通过校准曲线、ROC曲线和决策曲线分析(DCA)进行了验证。随访数据包括生存月数、死因和生命状态。初次诊断后3个月内的死亡定义为ED,终点为全因ED和癌症特异性ED。

结果:共纳入了4,920名患有BM的NSCLC患者,并随机分为两个队列(7:3),包括训练队列(n=3,444)和验证队列(n=1,476)。全因ED和癌症特异性ED的独立预后因素包括年龄、性别、种族、肿瘤大小、组织学、T分期、N分期、分级、手术、放疗、化疗、骨转移和肝转移。所有这些变量都用于建立列线图。在全因ED和癌症特异性ED的列线图中,训练数据集的ROC曲线下面积分别为0.813(95% CI:0.799-0.837)和0.808(95% CI:0.791-0.830),验证数据集的ROC曲线下面积分别为0.835(95% CI:0.805-0.862)和0.824(95% CI:0.790-0.849)。此外,校准曲线证明预测的ED与实际值一致。DCA临床应用前景良好。

结论:列线图可用来预测患者死亡的具体概率,有助于治疗决策和重点护理,以及医患沟通。‍

原文与实操数据获取方式:"Zstats风暴统计"公众号回复关键词“案例复现”

本文构建logistic预测模型并做内部验证,思路框架清晰,案例十分典型。下面我们分步介绍:

1.1 数据集拆分

这篇案例文章按照7:3的比例将原数据集随机拆分为训练集与验证集。训练集用于构建预测模型,验证集用于模型的内部验证。

9ad145720e1b65e98cfb60c8ea567525.png

1.2 基线描述

数据集拆分后,对训练集与验证集数据分开进行人群特征的基线描述。

293229828b1b42b745ae8d914eeaeff7.png

1.3 筛选预测因子

原文章采用了先单后多的筛选方式,将单因素回归结果P值小于0.05的变量纳入多因素回归构建预测模型。

8c29f288bb75927e5f3fa8f3439fb7e0.png

 单因素logistic回归结果

f4931b938111e5f979cafb6a85adf819.png

多因素logistic回归结果

1.4 绘制列线图

最终根据多因素模型绘制了列线图。

a319eecb5b2fd47ea0124f6cbdadfbcd.png


风暴统计平台是由浙江中医药大学郑卫军教授基于R语言开发的统计分析平台,它具有以下优点:

  • 结果输出简洁,直接生成三线表,支持word版下载!

  • 平台是基于R语言进行开发,结果准确性有保障

  • 全部菜单式操作,统计小白也可以轻松上手!

风暴统计Zstats预测模型链接,欢迎电脑端测试
https://www.zstats.cn/software/premodel_test01/

首先,浏览器搜索风暴统计,依次点击"风暴智能统计"——"临床预测模型"——"logistic临床预测模型"!进入分析界面后,根据提示,完成数据的导入与整理。

我们复现用到的数据集是根据原文献变量及纳排标准整理的,最终样本量n=6814(原样本量n=4920)。

45a849abbd9a77be9e04b66d5292d4e1.png

2.1 数据集拆分

预测模型都需要内部验证,内部验证的方法有随机拆分、交叉验证、Boostrap等。但风暴统计平台目前仅能做随机拆分法内部验证。

随机拆分法内部验证,顾名思义就是将原始数据集按照7:3(常见)或者6:4等比例进行拆分,一部分用于建模,另外一部分用于验证模型。

a79f093bac50652ebf10490b4bcddfb7.png

风暴统计支持两种拆分方式:随机拆分法、导入已拆分好的数据。

  • 如果选择“随机拆分”,需要设置随机种子拆分比例。随机种子对于数字位数没有要求,作用是可以保证拆分数据的分析结果可以复现,平台默认是1234,拆分比例更好理解,只需要拖动滑条,蓝色部分就是训练集的数据占总数据的比例。

34089fe2048918ec2381683ece354978.png

  • 如果选择“导入已拆分好的数据”,需要设置事先在导入的数据集中增加一列用于区分训练集和验证集的变量,比如新增列叫"group",通过编码赋值1代表训练集,2代表验证集。那么第一步:选入区分训练集与验证集的变量,第二步:勾选代表训练集的编码值!

    注:“导入已拆分好的数据”不仅可以做内部验证,更重要还可以用来做外部验证哦!同样需要一列变量来区分训练集和外部验证集!

8b12caf9ca4e874b6988f86a5d518ec8.png

这里我们按照原文献选择按照7:3比例进行随机拆分。

2.2 基线描述

完成"数据拆分"后,我们就来到了"训练集与验证集的比较",这里的分组变量是完成数据拆分后的新增变量,用来区分训练集和验证集,平台会自动选入。

接着,需要我们将需要分析的变量归类纳入正态变量、偏态变量、分类变量。

7363c15195ef4e275143c34122c1999f.png

正态数据会使用均值±标准差表示,采用t检验进行组间比较;偏态数据会使用中位数与上下四分位数表示,采用秩和检验进行组间比较;分类数据会使用百分比表示,采用卡方检验及fisher法进行组间比较!

696f8f3ac5c2028eb4c0eb447a0a006a.png

2.3 筛选预测因子

下面我们就可以开始构建预测模型啦!请注意,预测模型的构建仅在训练集开展哦!

预测模型的本质,简单来说,也就是多因素回归模型!多因素回归听上去是不是平易近人许多?风暴统计可以超快速完成这一步!

首先,选择模型变量——因变量自变量。因变量必须是以0和1赋值的哦!自变量就可以放入我们数据中所有可能的预测因子!

81b14dfaa69c2d9e4cfe87d7648ced5a.png

然后,平台超快速就给出了批量单因素分析的结果!

ccbc894be8c11784bff9c39576a564ed.png

接着,定义模型自变量筛选的方式,满足筛选条件的自变量会进入多因素回归模型!

注:多因素模型中的所有变量就是我们最终预测模型中全部的预测因子了,并不只是多因素中有意义的变量哦!如果希望预测模型中的变量P值均小于0.05,可以选择逐步回归分析中"根据P<0.05筛选"的选项!

6cf46478a3e9c3274c8281adc67fb1b7.png

自变量筛选方式也有3种:

  • 基于分组差异性结果

  • 基于单因素回归结果

  • 自定义

前两个比较相似,区别就在是根据差异性P值还是单因素P值进行筛选!

如果选择了"基于分组差异性"或"基于单因素回归",只需要完成2步设置。

第一步,P阈值的选择,如果自变量个数过少,可以适当放宽标准,0.1、0.2也都是可以的。当选择不限制时,单因素的全部自变量都将纳入多因素回归分析。

第二步,是否开展逐步回归,选择“否”,就是我们常见的先单后多分析,另外逐步回归方法,平台也提供了多种选择:双向逐步回归,向前逐步回归,向后逐步回归以及考虑到有时P值大于0.05的变量在逐步回归时也会留在模型中,新增了根据P<0.05的原则开展逐步回归!大家可以根据研究需要自行选择。

a0666b17aa54d85577351591eb7d8963.png

bd15d5fa762ffb995df5444e8043c759.png

如果选择了自定义筛选自变量,比如实际研究中,预测因子的筛选也需要结合专业知识以及相关文献进行判断,纯数据驱动也不太好。假如变量A在临床中是十分重要的变量,但是受限于样本原因,单因素与差异性均没有统计学意义,这时候,我们可以自定义挑选预测因子,选择我们预期的预测因子,自行选择是否需要逐步回归!也是一条途径!

b9696afa4af759b36c3d202ff3e532db.png

选择完毕后,我们就得到了多因素回归的结果,现在多因素模型也就是我们最终的预测模型,列线图中会包含多因素回归中的全部变量!

7cee13b9bf107b03948b7c69184b68bc.png

2.4 绘制列线图

进入“模型呈现、评价与验证“部分,就会出现我们最终的列线图啦!

75ff6441232cbac4b58e4db98b54862e.png

平台将R语言众多的细节参数设置全部转为了菜单式操作,像是刻度、变量值、变量、图全部支持自定义!

2.5 下载结果

完成分析后,就可以下载结果了,我们前面分析的全部结果,平台均支持下载,表格类结果可下载word版,图片结果可下载pdf、jpeg、png、tiff

包括拆分后的数据集(总数据集、训练集、验证集)基线描述三线表logistic回归三线表列线图图片

024204a0487923bac51d7bd43d6c744f.png
706556bbdc631f2aaf6619dee909ebec.png
1dc023c89e12f3b5c2b8933c062cc349.png
原文与实操数据获取方式:"Zstats风暴统计"公众号回复关键词“案例复现”
  • 8
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值