1. 为什么数学中
方差的定义是各个数值与平均数之差的平方的平均数,用公式表示为:
σ 2 = 1 n ∑ i = 1 n ( x i − μ ) 2 \sigma^2 = \frac{1}{n}\sum_{i=1}^n(x_i-\mu)^2 σ2=n1i=1∑n(xi−μ)2
而您提到的"单差"(绝对偏差)的公式则是:
M A D = 1 n ∑ i = 1 n ∣ x i − μ ∣ MAD = \frac{1}{n}\sum_{i=1}^n|x_i-\mu| MAD=n1i=1∑n∣xi−μ∣
使用方差而不是绝对偏差的主要原因有:
-
数学特性:
方差通过平方可以消除正负号,使得所有偏差都变成正数。而且方差是可导的,这在数学处理上更方便。相比之下,绝对值函数在 x = 0 x=0 x=0 处不可导,这会使得一些数学运算变得困难。 -
对异常值的敏感度:
假设我们有一组数据 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,…,xn,其中有一个异常值特别大。方差中的平方项会给这个异常值更大的权重,使得我们更容易发现数据中的异常情况。例如:
如果一个值偏离均值 2 2 2 个单位:
- 在方差中贡献为: 2 2 = 4 2^2 = 4 22=4
- 在绝对偏差中贡献为: ∣ 2 ∣ = 2 |2| = 2 ∣2∣=2
- 统计理论的适用性:
在正态分布中,方差有着特殊的统计意义。如果随机变量 X X X 服从正态分布,其概率密度函数为:
f ( x ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=σ2π1e−2σ2(x−μ)2
这里的 σ 2 \sigma^2 σ2 就是方差,它直接关系到分布的"形状"。
- 线性变换的性质:
对于随机变量 X X X,如果进行线性变换 a X + b aX + b aX+b,其方差有简单的关系:
V a r ( a X + b ) = a 2 V a r ( X ) Var(aX + b) = a^2Var(X) Var(aX+b)=a2Var(X)
这种性质在统计分析中非常有用。
总的来说,虽然绝对偏差在概念上可能更直观,但方差在数学处理、统计理论和实际应用中都具有更多的优势。这就是为什么在统计学中更常用方差而不是绝对偏差的原因。
2. 方差有着特殊的统计意义 科学依据在哪
让我详细解释方差的统计学意义及其科学依据。
- 中心极限定理的基础
中心极限定理指出,当样本量足够大时,样本均值的分布会近似服从正态分布。这里方差起着关键作用。对于独立同分布的随机变量 X 1 , X 2 , . . . , X n X_1, X_2, ..., X_n X1,X2,...,Xn:
X ˉ n − μ σ / n → d N ( 0 , 1 ) \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} N(0,1) σ/nXˉn−μdN(0,1)
其中 σ 2 \sigma^2 σ2 是方差,这个定理为什么选择方差而不是绝对偏差,是因为:
- 最小二乘法的理论基础
高斯-马尔可夫定理证明,在线性回归中,当误差项满足以下条件时:
- 期望为0: E ( ϵ i ) = 0 E(\epsilon_i) = 0 E(ϵi)=0
- 方差恒定: V a r ( ϵ i ) = σ 2 Var(\epsilon_i) = \sigma^2 Var(ϵi)=σ2
最小二乘估计是最佳线性无偏估计(BLUE)。这里的证明过程依赖于方差的数学性质,特别是方差的可加性:
V a r ( a X + b Y ) = a 2 V a r ( X ) + b 2 V a r ( Y ) Var(aX + bY) = a^2Var(X) + b^2Var(Y) Var(aX+bY)=a2Var(X)+b2Var(Y)
- 信息论联系
在信息论中,高斯分布是给定方差下熵最大的连续分布。其熵为:
H ( X ) = 1 2 ln ( 2 π e σ 2 ) H(X) = \frac{1}{2}\ln(2\pi e\sigma^2) H(X)=21ln(2πeσ2)
这表明方差与信息量有着本质联系。
- 随机游走与布朗运动
在描述粒子运动时,方差与时间的关系:
σ 2 ( t ) = 2 D t \sigma^2(t) = 2Dt σ2(t)=2Dt
其中 D D D 是扩散系数。这个关系使用方差而不是绝对偏差,是因为布朗运动的基本性质。
- 最大似然估计
对于正态分布数据,样本方差是总体方差的最大似然估计:
σ ^ 2 = 1 n ∑ i = 1 n ( x i − x ˉ ) 2 \hat{\sigma}^2 = \frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2 σ^2=n1i=1∑n(xi−xˉ)2
这个估计具有一系列优良的统计性质,比如:
- 无偏性
- 一致性
- 渐近正态性
- 统计力学联系
在统计力学中,系统的能量波动与方差有关:
⟨ E 2 ⟩ − ⟨ E ⟩ 2 = k T 2 ∂ ⟨ E ⟩ ∂ T \langle E^2 \rangle - \langle E \rangle^2 = kT^2\frac{\partial \langle E \rangle}{\partial T} ⟨E2⟩−⟨E⟩2=kT2∂T∂⟨E⟩
这个关系使用方差而不是绝对偏差,是因为能量分布的基本物理性质。
- 谱分析应用
在信号处理中,功率谱密度函数实际上是信号方差在频率域的分解:
σ 2 = ∫ − ∞ ∞ S ( f ) d f \sigma^2 = \int_{-\infty}^{\infty} S(f)df σ2=∫−∞∞S(f)df
这些科学依据表明,方差不仅仅是一个统计量,而是与物理世界的基本规律有着深刻联系。它之所以被广泛使用,是因为它在理论推导和实际应用中都展现出了独特的优势和普适性。