前言
CBMA注意力机制
一、注意力机制是什么?
深度学习中的注意力机制(Attention Mechanism)是一种模仿人类视觉和认知系统的方法,它
允许神经网络在处理输入数据时集中注意力于相关的部分。通过引入注意力机制,神经网络能够自
动地学习并选择性地关注输入中的重要信息,提高型的性能和泛化能力。
二、CBAM注意力机制
2.1 通道注意力机制
通道注意力机制就是将一个WxHxC的特征图拆分成WxH个1x1xC小的特征图,每个小的特征图都进行一次MaxPool和AvgPool,然后再进行共享权重的操作,最后相加得到一个1x1xC的通道注意,再与输入的特征图也就是WxHxC进行相乘得到经过映射的特征图WxHxC。
2.2 空间注意力机制
空间注意力机制是将输入的WxHxC的特征图拆分成C个WxHx1的特征图,分别经过MaxPool和AvgPool,将两次池化后的特征图进行相加得到WxHx2的特征图,将得到的特征图进行一次卷积得到WxHx1的特征图再与输入特征图进行相乘得到映射后的特征图WxHxC
2.2 CBAM注意力机制
就是将通道注意力机制和空间注意力机制进行合并。