CBMA注意力机制

前言

CBMA注意力机制

一、注意力机制是什么?

深度学习中的注意力机制(Attention Mechanism)是一种模仿人类视觉和认知系统的方法,它
允许神经网络在处理输入数据时集中注意力于相关的部分。通过引入注意力机制,神经网络能够自
动地学习并选择性地关注输入中的重要信息,提高型的性能和泛化能力。
在这里插入图片描述

二、CBAM注意力机制

在这里插入图片描述

2.1 通道注意力机制

在这里插入图片描述
通道注意力机制就是将一个WxHxC的特征图拆分成WxH个1x1xC小的特征图,每个小的特征图都进行一次MaxPool和AvgPool,然后再进行共享权重的操作,最后相加得到一个1x1xC的通道注意,再与输入的特征图也就是WxHxC进行相乘得到经过映射的特征图WxHxC。

2.2 空间注意力机制

空间注意力机制是将输入的WxHxC的特征图拆分成C个WxHx1的特征图,分别经过MaxPool和AvgPool,将两次池化后的特征图进行相加得到WxHx2的特征图,将得到的特征图进行一次卷积得到WxHx1的特征图再与输入特征图进行相乘得到映射后的特征图WxHxC
在这里插入图片描述

2.2 CBAM注意力机制

就是将通道注意力机制和空间注意力机制进行合并。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值