YOLOv9改进,YOLOv9添加EMA注意力机制

69 篇文章 ¥199.90 ¥299.90

在这里插入图片描述

前言

在各种计算机视觉任务中,通道或空间注意力机制在生成更具辨识度的特征表示方面表现出显著的效果。然而,通过通道维度减少来建模跨通道关系可能会在提取深度视觉表示时带来副作用。本文提出了一种新颖的高效多尺度注意力(EMA)模块。该模块重点在于保留每个通道的信息并降低计算开销,我们将部分通道重新排列到批次维度,并将通道维度分组为多个子特征,使得空间语义特征在每个特征组内分布均匀。

EMA理论详解可以参考链接:论文地址
EMA代码可在这个链接找到:代码地址

本文在YOLOv9中引入EMA,代码已经整理好了,跟着文章复制粘贴,即可直接运行

<
### 改进 YOLOv8 的 EMA注意力机制 为了在 YOLOv8 中优化 EMA(指数移动平均)和注意力机制以提高模型性能,可以采取以下措施: #### 1. 实现 EMA 注意力机制模块 EMA 注意力机制通过引入指数加权移动平均来增强特征图的关注度。这有助于更好地捕捉长期依赖关系并减少噪声干扰。 ```python import torch import torch.nn as nn class EMA_Attention(nn.Module): def __init__(self, channels, gamma=0.9): super(EMA_Attention, self).__init__() self.gamma = gamma self.channels = channels self.conv = nn.Conv2d(channels, channels, kernel_size=1) def forward(self, x): b, c, h, w = x.size() ema_weight = torch.zeros_like(x).to(x.device) for i in range(h): for j in range(w): if i == 0 and j == 0: ema_weight[:, :, i, j] = x[:, :, i, j] else: prev_value = ema_weight[:, :, max(i-1, 0), max(j-1, 0)] current_value = x[:, :, i, j] ema_weight[:, :, i, j] = (1 - self.gamma) * current_value + self.gamma * prev_value out = self.conv(ema_weight) return out ``` 此代码实现了 EMA 注意力机制的核心逻辑[^1]。 #### 2. 修改 `__all__` 列表 为了让新添加EMA 注意力机制能够被正确导入,在文件中找到 `__all__` 变量,并在其列表中加入 `"EMA_attention"`,确保前后有逗号分隔开其他项[^2]。 ```python __all__ = ( &#39;some_module&#39;, &#39;another_module&#39;, &#39;EMA_attention&#39;, # 添加这一行 ) ``` #### 3. 导入自定义模块 编辑 `ultralytics/nn/tasks.py` 文件,在适当位置添加如下语句以便于后续调用该功能模块。 ```python from ultralytics.nn.modules.EMA_attention import EMA_attention ``` 这些改动使得可以在训练过程中应用 EMA 注意力机制,从而进一步提升检测精度与鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值