YOLOv9改进,YOLOv9添加EMA注意力机制

47 篇文章 6 订阅 ¥199.90 ¥299.90

在这里插入图片描述

前言

在各种计算机视觉任务中,通道或空间注意力机制在生成更具辨识度的特征表示方面表现出显著的效果。然而,通过通道维度减少来建模跨通道关系可能会在提取深度视觉表示时带来副作用。本文提出了一种新颖的高效多尺度注意力(EMA)模块。该模块重点在于保留每个通道的信息并降低计算开销,我们将部分通道重新排列到批次维度,并将通道维度分组为多个子特征,使得空间语义特征在每个特征组内分布均匀。

EMA理论详解可以参考链接:论文地址
EMA代码可在这个链接找到:代码地址

本文在YOLOv9中引入EMA,代码已经整理好了,跟着文章复制粘贴,即可直接运行

<
抱歉,我目前无法绘制和展示图像。但是,我可以为您提供EMA(Exponential Moving Average,指数移动平均)注意力机制的结构描述。EMA注意力机制是一种用于自然语言处理任务的注意力机制,其核心思想是根据历史信息和当前输入信息的相关性来计算加权平均。 EMA注意力机制的结构如下: 1. 输入向量:首先,将输入序列(例如文本序列)表示为向量序列,每个向量代表一个输入。 2. 历史信息:使用预定义的历史窗口大小,选择最近的一部分输入向量作为历史信息。 3. 相似度计算:计算当前输入向量与历史信息中每个向量的相似度分数。可以使用余弦相似度或其他相似度度量方法来衡量它们之间的相似性。 4. 权重计算:使用softmax函数对相似度分数进行归一化,得到与历史信息中每个向量相关的权重。 5. 加权平均:将当前输入向量与相应的权重相乘,并对所有加权后的向量求和,得到历史信息的加权平均表示。 6. 模型融合:将加权平均表示与当前输入向量进行融合,以获得综合表示。 通过以上步骤,EMA注意力机制能够根据历史信息和当前输入的相关性,生成一个综合的表示向量,用于后续的任务处理。请注意,实际的EMA注意力机制可能会有一些变化和改进,具体的实现可能会根据任务需求和模型架构的不同而有所差异。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值