YOLOv8改进:添加EMA注意力机制

1、EMA介绍

论文:[2305.13563v1] Efficient Multi-Scale Attention Module with Cross-Spatial Learning (arxiv.org)

录用:ICASSP2023

本文提出了一种新的跨空间学习方法,并设计了一个多尺度并行子网络来建立短和长依赖关系。

用YOLOv5x作为骨干CNN在VisDrone数据集上进行目标检测,其中CA, CBAM和EMA注意力分别集成到检测器中。从表2的结果可以看出,CA, CBAM和EMA都可以提高目标检测的基线性能。

根据引用和引用的内容,可以了解到EMA(Exponential Moving Average)注意力机制是一种用于改进YoloV8目标检测算法的方法。EMA注意力机制已经被应用于YoloV8,并在自己的数据集上进行了测试,并取得了一定的提升。 具体来说,将EMA注意力机制的代码文件放置在ultralytics/nn/modules/文件夹下,然后在block.p脚本中导入EMA模块。这样就可以在YoloV8中使用EMA注意力机制进行改进,并进行实验和测试。 综上所述,EMA注意力机制是一种可以改进YoloV8目标检测算法的方法,可以提高检测性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [YoloV8改进策略:新出炉的EMA注意力机制助力YoloV8更加强大](https://blog.csdn.net/m0_47867638/article/details/131356975)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [YOLOV8改进:CVPR 2023 | 在C2f模块不同位置添加EMA注意力机制,有效涨点](https://blog.csdn.net/m0_51530640/article/details/131412297)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 45
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值