人工智能CNN 卷积神经网络结构(tensorflow代码实现)

本文通过MNIST数据集,详细介绍了使用TensorFlow实现CNN卷积神经网络的过程,包括数据插入、精度函数定义、权重与偏置、卷积核、池化层、全连接层等,为理解CNN在人工智能中的应用提供了基础案例。
摘要由CSDN通过智能技术生成

MNIST是一个简单的视觉计算数据集,它是像下面这样手写的数字图片:

MNIST

通过上期的分享,我们了解了手写数字识别的基本原理以及CNN卷积神经网络的基本原理,本期我们结合MNIST数据集,来用代码来实现CNN。(手写数字识别是TensorFlow人工智能最基础的案例,这个跟学习编程语言的hello Word一样)

1、插入MNIST数据集

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

2、定义精度函数

def compute_accuracy(v_xs, v_ys):
 global prediction
 y_pre = sess.run(prediction, feed_dict={xs: v_xs})
 correct_prediction = tf.equ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能研究所

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值