浅谈内积空间

本文介绍了线性空间、度量空间、赋范线性空间和内积空间的概念及其相互关系。线性空间由加法和数乘运算构成,度量空间基于距离定义,赋范线性空间结合了线性空间和拓扑结构,内积空间引入了内积概念,具有实线性空间上内积的四个性质。以 Rn 为例,展示了内积空间的范数定义和欧式距离的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,介绍线性空间度量空间,分别具有代数结构和拓扑结构;
其次,介绍兼有两种结构的赋范线性空间
然后,介绍内积空间,作为赋范线性空间的特例;
最后,给出一个例子: R n \small R^n Rn.

一、线性空间

  什么是空间?In mathematics, a space is a set with some added structure.(@Wikipedia)
  空间 = 集合 + 结构,线性空间就是给集合穿上线性结构的外衣.
  那什么是线性结构呢?线性结构 = 加法 + 数乘.
  下面给出线性空间的定义:
  首先得有一个集合,记为 V \small V V,在 V \small V V 中定义了元素的加法运算 + : V × V → V \small +:V\times V \to V +:V×VV,即 ∀    x , y ∈ V \small \forall \;x,y \in V x,yV,在 V \small V V 中都有唯一的一个元素 γ \gamma γ 与之对应,称为 x x x y y y,记为 x + y x+y x+y.
  第二个运算是数乘,数乘就是用一个数去"乘",这个数从哪里来呢?答案是数域 F \small F F. 数乘运算 ⋅ : F × V → V \small \cdot:F \times V \to V :F×VV ∀   a ∈ F ,   x ∈ V \small \forall \, a \in F,\,x \in V aF,xV,在 V \small V V 中都有唯一的一个元素 δ \delta δ 与之对应,称为 a a a x x x数量乘积,记为 a x ax ax.
  光有运算是不够的,这两种运算还要满足以下八条性质.

加法:

1.   x + ( y + z ) = ( x + y ) + z 1.\,x+(y+z)=(x+y)+z 1.x+(y+z)=(x+y)+z
2.   x + y = y + x 2.\,x+y=y+x 2.x+y=y+x
3.   T h e r e    e x i s t s    a n    e l e m e n t 3.\,There\,\,exists\,\,an\,\,element 3.Thereexistsanelement 0 \bf 0 0 ∈ V , s u c h    t h a t    x   + ∈ V,such\,\,that\,\,x \,+ V,suchthatx+ 0 \bf 0 0 = x , ∀   x ∈ V = x ,\forall \, x ∈ V =x,xV.
4.   ∀   x ∈ V , t h e r e    e x i s t s    a n    e l e m e n t    − x ∈ V , s u c h    t h a t    x + ( − x ) = 4.\,\forall \,x ∈ V, there \,\, exists \,\,an \,\,element \,\,−x ∈ V, such \,\,that\,\, x + (−x) = 4.xV,thereexistsanelementxV,suchthatx+(x)= 0 \bf 0 0.

数乘 ( a , b ∈ F ) \small (a,b \in F) (a,bF)

5.   1 x = x 5.\,1x=x 5.1x=x
6.   ( a b ) x = a ( b x ) 6.\,(ab)x=a(bx) 6.(ab)x=a(bx)

加法和数乘:

7.   ( a + b ) x = a x + b x 7.\,(a+b)x=ax+bx 7.(a+b)x=ax+bx
8.   a ( x + y ) = a x + a y 8.\,a(x+y)=ax+ay 8.a(x+y)=ax+ay

  如果这些条件都满足,则称 V \small V V 为数域 F \small F F 上的线性空间向量空间,其中的元素称为向量.

二、度量空间

  度量空间 = 集合 + 拓扑结构
  仍是先给定一个集合 V \small V V,然后在 V \small V V 上定义一种运算,叫距离 d : V × V → R \small d:V\times V\to R d:V×VR,即 ∀    x , y ∈ V \small \forall \;x,y \in V x,yV,在 R \small R R 中都有唯一的一个元素 δ \delta δ 与之对应,称为 x , y x,y x,y 之间的 距离,记为 d ( x , y ) d(x,y) d(x,y),且满足以下性质:

1.   d ( x , y ) ≥ 0 , ∀    x , y ∈ V   1.\,d(x,y)\geq0,\forall \;x,y \in V\, 1.d(x,y)0,x,yV    d ( x , y ) = 0 ⇔ x = y \,\, d(x,y)=0 \Leftrightarrow x=y d(x,y)=0x=y
2.   d ( x , z ) ≤ d ( x , y ) + d ( y , z ) 2.\,d(x,z)\leq d(x,y)+d(y,z) 2.d(x,z)d(x,y)+d(y,z)

则称 ( V , d ) \small (V,d) (V,d)度量空间距离空间,其中的元素称为.

三、赋范线性空间

  赋范线性空间 = 线性空间 + 范数,即给线性空间穿上拓扑结构的外衣.
  设 V \small V V 是实线性空间,即对应数域为 R \small R R,在其上定义范数运算 ∥ ⋅ ∥ : V → R \small \Vert \cdot\Vert: V \to R :VR,即 ∀    x ∈ V \small \forall \;x \in V xV,在 R \small R R 中都有唯一的一个元素 δ \delta δ 与之对应,称为向量 x x x范数,记为 ∥ x ∥ \small \Vert x\Vert x,且满足以下性质:

1.   ∥ x ∥ ≥ 0   1.\,\Vert x\Vert \geq 0 \, 1.x0   ∥ x ∥ = 0 ⇔ x = 0 \,\Vert x\Vert=0 \Leftrightarrow x=0 x=0x=0
2.   ∥ a x ∥ = ∣ a ∣ ∥ x ∥ ,   a ∈ R 2.\,\Vert ax\Vert=\vert a\vert \Vert x\Vert,\, a \in R 2.ax=a∣∥x,aR
3.   ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ ,   x , y ∈ V 3.\,\Vert x+y\Vert \leq \Vert x\Vert + \Vert y\Vert,\, x,y \in V 3.x+yx+y,x,yV

则称 ( V , ∥ ⋅ ∥ ) \small (V, \Vert \cdot\Vert) (V,)赋范线性空间.
下面根据范数定义距离,令 d ( x , y ) = ∥ x − y ∥ \small d(x,y)=\Vert x-y\Vert d(x,y)=xy,则
1.   d ( x , y ) ≥ 0 , ∀    x , y ∈ V   1. \,\small d(x,y)\geq0,\forall \;x,y \in V\, 1.d(x,y)0,x,yV    d ( x , y ) = 0 ⇔ x = y \,\, d(x,y)=0 \Leftrightarrow x=y d(x,y)=0x=y
2.   d ( x , z ) = ∥ x − z ∥ = ∥ x − y + y − z ∥ ≤ ∥ x − y ∥ + ∥ y − z ∥ = d ( x , y ) + d ( y , z ) \begin{aligned}2. \,\small d(x,z)&=\Vert x-z\Vert=\Vert x-y+y-z\Vert\\&\leq \Vert x-y\Vert + \Vert y-z\Vert\\ &=d(x,y)+d(y,z)\end{aligned} 2.d(x,z)=xz=xy+yzxy+yz=d(x,y)+d(y,z)
所以 d d d V \small V V 上的距离, ( V , d ) \small (V,d) (V,d) 是度量空间,赋范线性空间 V \small V V 也具有拓扑结构.

四、内积空间

  内积空间 = 线性空间 + 内积
  这里仅考虑实线性空间上的内积,设 V \small V V 是实线性空间,在其上定义内积运算 (   ⋅   , ⋅   ) : V × V → R \small (\,\cdot\,,\cdot\,): V \times V \to R (,):V×VR,即 ∀    x , y ∈ V \small \forall \;x,y \in V x,yV,在 R \small R R 中都有唯一的一个元素 δ \delta δ 与之对应,称为 x x x y y y内积,记为 ( x , y ) (x,y) (x,y),且满足以下性质:

1.   ( x , x ) ≥ 0 1.\,(x,x)\geq0 1.(x,x)0    ( x , x ) = 0 ⇔ x = 0 \,\, (x,x)=0 \Leftrightarrow x=0 (x,x)=0x=0
2.   ( x , y ) = ( y , x ) 2.\,(x,y)=(y,x) 2.(x,y)=(y,x)
3.   ( a x , z ) = a ( x , z ) ,   a ∈ R 3.\,(ax,z)=a(x,z),\,a \in R 3.(ax,z)=a(x,z),aR
4.   ( x + y , z ) = ( x , z ) + ( y , z ) 4.\,(x+y,z)=(x,z)+(y,z) 4.(x+y,z)=(x,z)+(y,z)

则称 ( V , (   ⋅   , ⋅   ) ) \small (V,(\,\cdot\,,\cdot\,)) (V,(,))内积空间.
下面根据内积定义范数,令 ∥ x ∥ = ( x , x ) \small \Vert x\Vert=\sqrt{(x,x)} x=(x,x) ,则
1.   ∥ x ∥ ≥ 0   1. \,\small \Vert x\Vert \geq 0 \, 1.x0   ∥ x ∥ = 0 ⇔ x = 0 \,\Vert x\Vert=0 \Leftrightarrow x=0 x=0x=0
2.   ∥ a x ∥ = ( a x , a x ) = a 2 ( x , x ) = ∣ a ∣ ∥ x ∥ 2. \,\small \Vert ax\Vert=\sqrt{(ax,ax)}=\sqrt{a^2(x,x)}=\vert a\vert \Vert x\Vert 2.ax=(ax,ax) =a2(x,x) =a∣∥x
为证明 3.   ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ 3. \,\small \Vert x+y\Vert \leq \Vert x\Vert + \Vert y\Vert 3.x+yx+y,先证明 柯西-施瓦兹(Cauchy-Schwarz)不等式 ( x , y ) 2 ≤ ( x , x ) ( y , y ) (x,y) ^2\leq(x,x)(y,y) (x,y)2(x,x)(y,y) x = 0 x=0 x=0,不等式显然成立;
否则,考虑 ( t x + y , t x + y ) = ( x , x ) t 2 + 2 ( x , y ) t + ( y , y ) ≥ 0 (tx+y,tx+y) = (x,x)t^2+2(x,y)t+(y,y)\geq0 (tx+y,tx+y)=(x,x)t2+2(x,y)t+(y,y)0将其看作是关于 t t t 的二次函数,则有 Δ = 4 ( x , y ) 2 − 4 ( x , x ) ( y , y ) ≤ 0 \Delta=4(x,y)^2-4(x,x)(y,y)\leq0 Δ=4(x,y)24(x,x)(y,y)0所以 ( x , y ) 2 ≤ ( x , x ) ( y , y ) \small (x,y)^2\leq(x,x)(y,y) (x,y)2(x,x)(y,y),即 ( x , y ) ≤ ( x , x ) ( y , y ) \small (x,y)\leq \sqrt{(x,x)(y,y)} (x,y)(x,x)(y,y) ,当且仅当 t x + y = 0 tx+y=0 tx+y=0 时,“ = = =” 成立.
∥ x + y ∥ 2 = ( x + y , x + y ) = ( x , x ) + ( x , y ) + ( y , x ) + ( y , y ) ≤ ( x , x ) + 2 ( x , x ) ( y , y ) + ( y , y ) = ( ( x , x ) + ( y , y ) ) 2 = ( ∥ x ∥ + ∥ y ∥ ) 2 \begin{aligned}\small \Vert x+y\Vert^2&=(x+y,x+y)\\&=(x,x)+(x,y)+(y,x)+(y,y)\\ &\leq (x,x)+2\sqrt{(x,x)(y,y)}+(y,y)\\&=(\sqrt{(x,x)}+\sqrt{(y,y)})^2\\&=(\Vert x\Vert + \Vert y\Vert)^2\end{aligned} x+y2=(x+y,x+y)=(x,x)+(x,y)+(y,x)+(y,y)(x,x)+2(x,x)(y,y) +(y,y)=((x,x) +(y,y) )2=(x+y)2
所以 ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ \Vert x+y\Vert \leq \Vert x\Vert + \Vert y\Vert x+yx+y.
  综上, ∥ x ∥ = ( x , x ) \small \Vert x\Vert=\sqrt{(x,x)} x=(x,x) 是线性空间 V \small V V 上的范数, ( V , (   ⋅   , ⋅   ) ) \small (V,\sqrt{(\,\cdot\,,\cdot\,)}) (V,(,) ) 是赋范线性空间.

五、举个例子 R n R^n Rn

  到目前为止,已经介绍了线性空间、度量空间、赋范线性空间和内积空间,它们之间的关系如图所示

  下面举个例子, R n = { ( ξ 1 , ξ 2 , ⋯   , ξ n ) ∣   ξ i ∈ R , i = 1 , 2 , ⋯   , n } \small R^n=\lbrace(\xi_1,\xi_2,\cdots,\xi_n)|\,\xi_i \in R,i=1,2,\cdots,n\rbrace Rn={(ξ1,ξ2,,ξn)ξiR,i=1,2,,n},取 R \small R R 为对应数域,加法和数乘按照通常定义,容易验证满足那八条性质,则 R n \small R^n Rn 是线性空间. ∀   x , y ∈ R n \small \forall \,x,y \in R^n x,yRn,记 x = ( ξ 1 , ξ 2 , ⋯   , ξ n ) ,   y = ( η 1 , η 2 , ⋯   , η n ) x=(\xi_1,\xi_2,\cdots,\xi_n),\,y=(\eta_1,\eta_2,\cdots,\eta_n) x=(ξ1,ξ2,,ξn),y=(η1,η2,,ηn),定义 x x x y y y 的内积 ( x , y ) ≜ ∑ i = 1 n ξ i η i = x T y = y T x (x,y)\triangleq\sum_{i=1}^n\xi_i\eta_i=x^Ty=y^Tx (x,y)i=1nξiηi=xTy=yTx容易验证这样定义的内积满足内积的四条性质,所以 ( R n , (   ⋅   , ⋅   ) ) \small (R^n,(\,\cdot\,,\cdot\,)) (Rn,(,)) 是内积空间.
再来看看这样定义的内积导出的范数 ∥ x ∥ = ( x , x ) = ∑ i = 1 n ξ i 2 = x T x \Vert x\Vert=\sqrt{(x,x)}=\sqrt{\sum_{i=1}^n\xi_i^2}=\sqrt{x^Tx} x=(x,x) =i=1nξi2 =xTx 2 2 2-范数.
接着,范数导出的距离 d ( x , y ) = ∥ x − y ∥ = ∑ i = 1 n ( ξ i − η i ) 2 d(x,y)=\Vert x-y\Vert=\sqrt{\sum_{i=1}^n{(\xi_i-\eta_i)}^2} d(x,y)=xy=i=1n(ξiηi)2 就是通常所说的欧式距离.


Plus:
英文解释可参照维基百科(Wikipedia):
线性空间(Vector space)
度量空间(Metric space)
赋范线性空间(Normed vector space)
内积空间(Inner product space)


Plus: 如有错误、可以改进的地方、或任何想说的,请在评论区留言!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值