首先,介绍线性空间和度量空间,分别具有代数结构和拓扑结构;
其次,介绍兼有两种结构的赋范线性空间;
然后,介绍内积空间,作为赋范线性空间的特例;
最后,给出一个例子:
R
n
\small R^n
Rn.
一、线性空间
什么是空间?In mathematics, a space is a set with some added structure.(@Wikipedia)
空间 = 集合 + 结构,线性空间就是给集合穿上线性结构的外衣.
那什么是线性结构呢?线性结构 = 加法 + 数乘.
下面给出线性空间的定义:
首先得有一个集合,记为
V
\small V
V,在
V
\small V
V 中定义了元素的加法运算
+
:
V
×
V
→
V
\small +:V\times V \to V
+:V×V→V,即
∀
x
,
y
∈
V
\small \forall \;x,y \in V
∀x,y∈V,在
V
\small V
V 中都有唯一的一个元素
γ
\gamma
γ 与之对应,称为
x
x
x 与
y
y
y 的 和,记为
x
+
y
x+y
x+y.
第二个运算是数乘,数乘就是用一个数去"乘",这个数从哪里来呢?答案是数域
F
\small F
F. 数乘运算
⋅
:
F
×
V
→
V
\small \cdot:F \times V \to V
⋅:F×V→V,
∀
a
∈
F
,
x
∈
V
\small \forall \, a \in F,\,x \in V
∀a∈F,x∈V,在
V
\small V
V 中都有唯一的一个元素
δ
\delta
δ 与之对应,称为
a
a
a 与
x
x
x 的 数量乘积,记为
a
x
ax
ax.
光有运算是不够的,这两种运算还要满足以下八条性质.
加法:
1.
x
+
(
y
+
z
)
=
(
x
+
y
)
+
z
1.\,x+(y+z)=(x+y)+z
1.x+(y+z)=(x+y)+z
2.
x
+
y
=
y
+
x
2.\,x+y=y+x
2.x+y=y+x
3.
T
h
e
r
e
e
x
i
s
t
s
a
n
e
l
e
m
e
n
t
3.\,There\,\,exists\,\,an\,\,element
3.Thereexistsanelement
0
\bf 0
0
∈
V
,
s
u
c
h
t
h
a
t
x
+
∈ V,such\,\,that\,\,x \,+
∈V,suchthatx+
0
\bf 0
0
=
x
,
∀
x
∈
V
= x ,\forall \, x ∈ V
=x,∀x∈V.
4.
∀
x
∈
V
,
t
h
e
r
e
e
x
i
s
t
s
a
n
e
l
e
m
e
n
t
−
x
∈
V
,
s
u
c
h
t
h
a
t
x
+
(
−
x
)
=
4.\,\forall \,x ∈ V, there \,\, exists \,\,an \,\,element \,\,−x ∈ V, such \,\,that\,\, x + (−x) =
4.∀x∈V,thereexistsanelement−x∈V,suchthatx+(−x)=
0
\bf 0
0.
数乘 ( a , b ∈ F ) \small (a,b \in F) (a,b∈F):
5.
1
x
=
x
5.\,1x=x
5.1x=x
6.
(
a
b
)
x
=
a
(
b
x
)
6.\,(ab)x=a(bx)
6.(ab)x=a(bx)
加法和数乘:
7.
(
a
+
b
)
x
=
a
x
+
b
x
7.\,(a+b)x=ax+bx
7.(a+b)x=ax+bx
8.
a
(
x
+
y
)
=
a
x
+
a
y
8.\,a(x+y)=ax+ay
8.a(x+y)=ax+ay
如果这些条件都满足,则称 V \small V V 为数域 F \small F F 上的线性空间或向量空间,其中的元素称为向量.
二、度量空间
度量空间 = 集合 + 拓扑结构
仍是先给定一个集合
V
\small V
V,然后在
V
\small V
V 上定义一种运算,叫距离
d
:
V
×
V
→
R
\small d:V\times V\to R
d:V×V→R,即
∀
x
,
y
∈
V
\small \forall \;x,y \in V
∀x,y∈V,在
R
\small R
R 中都有唯一的一个元素
δ
\delta
δ 与之对应,称为
x
,
y
x,y
x,y 之间的 距离,记为
d
(
x
,
y
)
d(x,y)
d(x,y),且满足以下性质:
1.
d
(
x
,
y
)
≥
0
,
∀
x
,
y
∈
V
1.\,d(x,y)\geq0,\forall \;x,y \in V\,
1.d(x,y)≥0,∀x,y∈V且
d
(
x
,
y
)
=
0
⇔
x
=
y
\,\, d(x,y)=0 \Leftrightarrow x=y
d(x,y)=0⇔x=y
2.
d
(
x
,
z
)
≤
d
(
x
,
y
)
+
d
(
y
,
z
)
2.\,d(x,z)\leq d(x,y)+d(y,z)
2.d(x,z)≤d(x,y)+d(y,z)
则称 ( V , d ) \small (V,d) (V,d) 为度量空间或距离空间,其中的元素称为点.
三、赋范线性空间
赋范线性空间 = 线性空间 + 范数,即给线性空间穿上拓扑结构的外衣.
设
V
\small V
V 是实线性空间,即对应数域为
R
\small R
R,在其上定义范数运算
∥
⋅
∥
:
V
→
R
\small \Vert \cdot\Vert: V \to R
∥⋅∥:V→R,即
∀
x
∈
V
\small \forall \;x \in V
∀x∈V,在
R
\small R
R 中都有唯一的一个元素
δ
\delta
δ 与之对应,称为向量
x
x
x 的 范数,记为
∥
x
∥
\small \Vert x\Vert
∥x∥,且满足以下性质:
1.
∥
x
∥
≥
0
1.\,\Vert x\Vert \geq 0 \,
1.∥x∥≥0且
∥
x
∥
=
0
⇔
x
=
0
\,\Vert x\Vert=0 \Leftrightarrow x=0
∥x∥=0⇔x=0
2.
∥
a
x
∥
=
∣
a
∣
∥
x
∥
,
a
∈
R
2.\,\Vert ax\Vert=\vert a\vert \Vert x\Vert,\, a \in R
2.∥ax∥=∣a∣∥x∥,a∈R
3.
∥
x
+
y
∥
≤
∥
x
∥
+
∥
y
∥
,
x
,
y
∈
V
3.\,\Vert x+y\Vert \leq \Vert x\Vert + \Vert y\Vert,\, x,y \in V
3.∥x+y∥≤∥x∥+∥y∥,x,y∈V
则称
(
V
,
∥
⋅
∥
)
\small (V, \Vert \cdot\Vert)
(V,∥⋅∥) 为赋范线性空间.
下面根据范数定义距离,令
d
(
x
,
y
)
=
∥
x
−
y
∥
\small d(x,y)=\Vert x-y\Vert
d(x,y)=∥x−y∥,则
1.
d
(
x
,
y
)
≥
0
,
∀
x
,
y
∈
V
1. \,\small d(x,y)\geq0,\forall \;x,y \in V\,
1.d(x,y)≥0,∀x,y∈V且
d
(
x
,
y
)
=
0
⇔
x
=
y
\,\, d(x,y)=0 \Leftrightarrow x=y
d(x,y)=0⇔x=y
2.
d
(
x
,
z
)
=
∥
x
−
z
∥
=
∥
x
−
y
+
y
−
z
∥
≤
∥
x
−
y
∥
+
∥
y
−
z
∥
=
d
(
x
,
y
)
+
d
(
y
,
z
)
\begin{aligned}2. \,\small d(x,z)&=\Vert x-z\Vert=\Vert x-y+y-z\Vert\\&\leq \Vert x-y\Vert + \Vert y-z\Vert\\ &=d(x,y)+d(y,z)\end{aligned}
2.d(x,z)=∥x−z∥=∥x−y+y−z∥≤∥x−y∥+∥y−z∥=d(x,y)+d(y,z)
所以
d
d
d 是
V
\small V
V 上的距离,
(
V
,
d
)
\small (V,d)
(V,d) 是度量空间,赋范线性空间
V
\small V
V 也具有拓扑结构.
四、内积空间
内积空间 = 线性空间 + 内积
这里仅考虑实线性空间上的内积,设
V
\small V
V 是实线性空间,在其上定义内积运算
(
⋅
,
⋅
)
:
V
×
V
→
R
\small (\,\cdot\,,\cdot\,): V \times V \to R
(⋅,⋅):V×V→R,即
∀
x
,
y
∈
V
\small \forall \;x,y \in V
∀x,y∈V,在
R
\small R
R 中都有唯一的一个元素
δ
\delta
δ 与之对应,称为
x
x
x 与
y
y
y 的 内积,记为
(
x
,
y
)
(x,y)
(x,y),且满足以下性质:
1.
(
x
,
x
)
≥
0
1.\,(x,x)\geq0
1.(x,x)≥0 且
(
x
,
x
)
=
0
⇔
x
=
0
\,\, (x,x)=0 \Leftrightarrow x=0
(x,x)=0⇔x=0
2.
(
x
,
y
)
=
(
y
,
x
)
2.\,(x,y)=(y,x)
2.(x,y)=(y,x)
3.
(
a
x
,
z
)
=
a
(
x
,
z
)
,
a
∈
R
3.\,(ax,z)=a(x,z),\,a \in R
3.(ax,z)=a(x,z),a∈R
4.
(
x
+
y
,
z
)
=
(
x
,
z
)
+
(
y
,
z
)
4.\,(x+y,z)=(x,z)+(y,z)
4.(x+y,z)=(x,z)+(y,z)
则称
(
V
,
(
⋅
,
⋅
)
)
\small (V,(\,\cdot\,,\cdot\,))
(V,(⋅,⋅)) 为内积空间.
下面根据内积定义范数,令
∥
x
∥
=
(
x
,
x
)
\small \Vert x\Vert=\sqrt{(x,x)}
∥x∥=(x,x),则
1.
∥
x
∥
≥
0
1. \,\small \Vert x\Vert \geq 0 \,
1.∥x∥≥0 且
∥
x
∥
=
0
⇔
x
=
0
\,\Vert x\Vert=0 \Leftrightarrow x=0
∥x∥=0⇔x=0
2.
∥
a
x
∥
=
(
a
x
,
a
x
)
=
a
2
(
x
,
x
)
=
∣
a
∣
∥
x
∥
2. \,\small \Vert ax\Vert=\sqrt{(ax,ax)}=\sqrt{a^2(x,x)}=\vert a\vert \Vert x\Vert
2.∥ax∥=(ax,ax)=a2(x,x)=∣a∣∥x∥
为证明
3.
∥
x
+
y
∥
≤
∥
x
∥
+
∥
y
∥
3. \,\small \Vert x+y\Vert \leq \Vert x\Vert + \Vert y\Vert
3.∥x+y∥≤∥x∥+∥y∥,先证明 柯西-施瓦兹(Cauchy-Schwarz)不等式
(
x
,
y
)
2
≤
(
x
,
x
)
(
y
,
y
)
(x,y) ^2\leq(x,x)(y,y)
(x,y)2≤(x,x)(y,y)若
x
=
0
x=0
x=0,不等式显然成立;
否则,考虑
(
t
x
+
y
,
t
x
+
y
)
=
(
x
,
x
)
t
2
+
2
(
x
,
y
)
t
+
(
y
,
y
)
≥
0
(tx+y,tx+y) = (x,x)t^2+2(x,y)t+(y,y)\geq0
(tx+y,tx+y)=(x,x)t2+2(x,y)t+(y,y)≥0将其看作是关于
t
t
t 的二次函数,则有
Δ
=
4
(
x
,
y
)
2
−
4
(
x
,
x
)
(
y
,
y
)
≤
0
\Delta=4(x,y)^2-4(x,x)(y,y)\leq0
Δ=4(x,y)2−4(x,x)(y,y)≤0所以
(
x
,
y
)
2
≤
(
x
,
x
)
(
y
,
y
)
\small (x,y)^2\leq(x,x)(y,y)
(x,y)2≤(x,x)(y,y),即
(
x
,
y
)
≤
(
x
,
x
)
(
y
,
y
)
\small (x,y)\leq \sqrt{(x,x)(y,y)}
(x,y)≤(x,x)(y,y),当且仅当
t
x
+
y
=
0
tx+y=0
tx+y=0 时,“
=
=
=” 成立.
∥
x
+
y
∥
2
=
(
x
+
y
,
x
+
y
)
=
(
x
,
x
)
+
(
x
,
y
)
+
(
y
,
x
)
+
(
y
,
y
)
≤
(
x
,
x
)
+
2
(
x
,
x
)
(
y
,
y
)
+
(
y
,
y
)
=
(
(
x
,
x
)
+
(
y
,
y
)
)
2
=
(
∥
x
∥
+
∥
y
∥
)
2
\begin{aligned}\small \Vert x+y\Vert^2&=(x+y,x+y)\\&=(x,x)+(x,y)+(y,x)+(y,y)\\ &\leq (x,x)+2\sqrt{(x,x)(y,y)}+(y,y)\\&=(\sqrt{(x,x)}+\sqrt{(y,y)})^2\\&=(\Vert x\Vert + \Vert y\Vert)^2\end{aligned}
∥x+y∥2=(x+y,x+y)=(x,x)+(x,y)+(y,x)+(y,y)≤(x,x)+2(x,x)(y,y)+(y,y)=((x,x)+(y,y))2=(∥x∥+∥y∥)2
所以
∥
x
+
y
∥
≤
∥
x
∥
+
∥
y
∥
\Vert x+y\Vert \leq \Vert x\Vert + \Vert y\Vert
∥x+y∥≤∥x∥+∥y∥.
综上,
∥
x
∥
=
(
x
,
x
)
\small \Vert x\Vert=\sqrt{(x,x)}
∥x∥=(x,x) 是线性空间
V
\small V
V 上的范数,
(
V
,
(
⋅
,
⋅
)
)
\small (V,\sqrt{(\,\cdot\,,\cdot\,)})
(V,(⋅,⋅)) 是赋范线性空间.
五、举个例子 R n R^n Rn
到目前为止,已经介绍了线性空间、度量空间、赋范线性空间和内积空间,它们之间的关系如图所示

下面举个例子,
R
n
=
{
(
ξ
1
,
ξ
2
,
⋯
,
ξ
n
)
∣
ξ
i
∈
R
,
i
=
1
,
2
,
⋯
,
n
}
\small R^n=\lbrace(\xi_1,\xi_2,\cdots,\xi_n)|\,\xi_i \in R,i=1,2,\cdots,n\rbrace
Rn={(ξ1,ξ2,⋯,ξn)∣ξi∈R,i=1,2,⋯,n},取
R
\small R
R 为对应数域,加法和数乘按照通常定义,容易验证满足那八条性质,则
R
n
\small R^n
Rn 是线性空间.
∀
x
,
y
∈
R
n
\small \forall \,x,y \in R^n
∀x,y∈Rn,记
x
=
(
ξ
1
,
ξ
2
,
⋯
,
ξ
n
)
,
y
=
(
η
1
,
η
2
,
⋯
,
η
n
)
x=(\xi_1,\xi_2,\cdots,\xi_n),\,y=(\eta_1,\eta_2,\cdots,\eta_n)
x=(ξ1,ξ2,⋯,ξn),y=(η1,η2,⋯,ηn),定义
x
x
x 与
y
y
y 的内积
(
x
,
y
)
≜
∑
i
=
1
n
ξ
i
η
i
=
x
T
y
=
y
T
x
(x,y)\triangleq\sum_{i=1}^n\xi_i\eta_i=x^Ty=y^Tx
(x,y)≜i=1∑nξiηi=xTy=yTx容易验证这样定义的内积满足内积的四条性质,所以
(
R
n
,
(
⋅
,
⋅
)
)
\small (R^n,(\,\cdot\,,\cdot\,))
(Rn,(⋅,⋅)) 是内积空间.
再来看看这样定义的内积导出的范数
∥
x
∥
=
(
x
,
x
)
=
∑
i
=
1
n
ξ
i
2
=
x
T
x
\Vert x\Vert=\sqrt{(x,x)}=\sqrt{\sum_{i=1}^n\xi_i^2}=\sqrt{x^Tx}
∥x∥=(x,x)=i=1∑nξi2=xTx是
2
2
2-范数.
接着,范数导出的距离
d
(
x
,
y
)
=
∥
x
−
y
∥
=
∑
i
=
1
n
(
ξ
i
−
η
i
)
2
d(x,y)=\Vert x-y\Vert=\sqrt{\sum_{i=1}^n{(\xi_i-\eta_i)}^2}
d(x,y)=∥x−y∥=i=1∑n(ξi−ηi)2就是通常所说的欧式距离.
Plus:
英文解释可参照维基百科(Wikipedia):
线性空间(Vector space)
度量空间(Metric space)
赋范线性空间(Normed vector space)
内积空间(Inner product space)
Plus: 如有错误、可以改进的地方、或任何想说的,请在评论区留言!