Moco: 无监督视觉表征学习的动量对比

Moco是一种用于无监督视觉表征学习的方法,通过动态字典和动量更新解决高维连续输入的问题。对比学习思想下,Moco利用InfoNCE损失函数,通过不断更新的编码器保持key的一致性。实验显示,相比于端到端和记忆库方法,Moco在大字典设置下表现出更好的性能,且在ImageNet的线性分类和迁移特征任务中取得优秀结果。此外,Moco v2引入SimCLR改进,进一步提升网络性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 概述

在NLP领域,无监督表征学习有GPT、BERT等效果非常好的模型,但是CV领域还是有监督模型作为主流。作者认为主要是因为CV和NLP领域处理的数据对应的信号空间不同:语言任务有离散的信号空间,词语词之间可以视为是独立的词组,能够很方便地构成字典(Dictionary),这种词典是无监督学习便于学习依赖的特征;而视觉领域的原始信号是在一个连续且高维空间中,无法成为结构化的信号,使得无监督学习难以展现在NLP领域发挥出的效果。

moco原理

作者提出了一种动态字典,即MOCO,新的minibatch对应的字典在进入队列时,将会替换最早进入的字典,使得字典始终是所有数据的子集,又始终代表最新的表征,经过试验发现,Moco的表现非常之好。

2 思想

对比学习的思想在于,通过一些已编码的query(q),使其与其对应的key(k)相对应,k是被编码的样本的在字典中的key { k 0 , k 1 , k 2 . . . } \lbrace k_0,k_1,k_2...\rbrace { k0,k1,k2...},假设 q q q k + k_+ k+相匹配,对比损失的目的是尽量拉近 q q q k + k_+ k+之间的距离而增大 q q q与其他 k i k_i ki之间的距离(拉近正对,缩小负对,其他的 k i k_i ki都是负对),Moco用的是点积的方法衡量相似度,称为InfoNCE loss:
ℓ i , j = − log ⁡ exp ⁡ ( q ⋅ k + / τ ) ∑ i = 0 K exp ⁡ ( q ⋅ k i

### 无负样本对比学习综述 #### 定义与背景 无负样本对比学习是一种特殊的自监督学习方法,旨在通过仅使用正样本对来训练模型,而不需要显式的负样本。传统对比学习依赖于大量精心设计的负样本来区分不同类别的特征表示[^1]。 #### 方法论发展 近年来的研究表明,在某些情况下可以完全消除对于负样本的需求。这类方法通常采用两种策略之一: - **基于实例判别**:每个数据点被视为其自身的类别标签,从而创建大量的伪类别用于构建正样本对。 - **动量编码器机制**:引入两个并行网络——查询网络和键网络。其中键网络更新较慢(即具有动量),这有助于稳定训练过程并减少过拟合风险。 #### 应用场景扩展 除了图像领域外,无负样本对比学习也被应用于其他模态的数据处理上,例如自然语言处理(NLP),音频信号分析等领域。这些应用证明了该技术的强大泛化能力以及适应多种任务类型的灵活性[^2]。 #### 最新研究进展 最新研究表明,无负样本框架能够有效提升下游任务性能的同时简化了预训练阶段的设计复杂度。具体来说: - MoCo v3 提出了改进版动量调整方案,进一步增强了模型稳定性; - DINO 则探索了教师-学生架构下的纯正则化路径,实现了无需任何额外标注信息即可获得高质量视觉表征的目标; - 更多工作正在尝试将此理念推广到更多未充分开发的任务中去,如视频理解、跨模态检索等[^3]。 ```python # 示例代码展示如何实现简单的无负样本对比损失函数 import torch.nn.functional as F def contrastive_loss(query, key, temperature=0.07): logits = query @ key.T / temperature labels = torch.arange(len(query), device=query.device) return F.cross_entropy(logits, labels) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值