线性方程组

线性代数中的线性方程组

1.1 线性方程组

  包含变量 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots ,x_n x1,x2,,xn线性方程是形如:
a 1 x 1 + a 2 x 2 + ⋯ + a n x n = b (1) a_1x_1+a_2x_2+\cdots +a_nx_n=b \tag{1} a1x1+a2x2++anxn=b(1)
的方程,其中 b b b与系数 a 1 , a 2 ⋯   , a n a_1,a_2\cdots,a_n a1,a2,an是实数或复数,通常是已知数.下标 n n n可以是任意正整数.
  方程
4 x 1 − 5 x 2 + 2 = x 1 和 x 2 = 2 ( 6 − x 1 ) + x 3 4x_1-5x_2+2=x_1 和 x_2=2(\sqrt{6} - x_1)+x_3 4x15x2+2=x1x2=2(6 x1)+x3
都是线性方程。
  方程
4 x 1 − 5 x 2 = x 1 x 2 和 x 2 = 2 x 1 − 6 4x_1-5x_2=x_1x_2 和 x_2=2\sqrt{x_1}-6 4x15x2=x1x2x2=2x1 6
都不是线性方程。
  线程方程组是由一个或几个包含相同变量 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn的线性方程组成的.例如:
{ 2 x 1 − x 2 + 1.5 x 3 = 8 x 1 − 4 x 3 = − 7 (2) \left \{ \begin{array}{c} 2x_1-x_2+1.5x_3=8 \\ \tag{2} x_1-4x_3=-7 \end{array} \right. {2x1x2+1.5x3=8x14x3=7(2)
线性方程组的是一组数 ( s 1 , s 2 , ⋯   , s n ) (s_1,s_2,\cdots,s_n) (s1,s2,,sn),用这组数分别代替 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn时所有方程组的两边相等。
  方程组所有可能的解的集合称为线程方程组的解集.若两个线程方程组有相同的解集,则这两个线性方程组称为等价的.

线性方程组的解有以下三种情况:

  1. 无解.
  2. 有唯一解.
  3. 有无穷多解.

  若方程组有一个解或无穷多解,则称为线性方程组是相容的;若其无解,则称为是不相容的.

矩阵记号

  一个线性方程组包含的主要信息可以用一个称为矩阵的紧凑的矩形阵列表示.给出方程组:
{ x 1 − 2 x 2 + x 3 = 0 2 x 2 − 8 x 3 = 8 5 x 1 − 5 x 3 = 10 (3) \left \{ \begin{array}{c} x_1-2x_2+x_3=0 \\ \tag{3} 2x_2-8x_3=8 \\ 5x_1-5x_3=10 \end{array} \right. x12x2+x3=02x28x3=85x15x3=10(3)
把每一个变量的系数写在对齐的一列中,矩阵:
[ 1 − 2 1 0 2 − 8 5 0 5 ] \begin{bmatrix} 1&-2&1\\ 0&2&-8\\ 5&0&5 \end{bmatrix} 105220185
称为方程组(3)的系数矩阵,而
[ 1 − 2 1 0 0 2 − 8 8 5 0 5 10 ] (4) \begin{bmatrix} 1&-2&1&0\\ 0&2&-8&8\\ \tag{4} 5&0&5&10 \end{bmatrix} 1052201850810 (4)
称为它的增广矩阵.方程组的增广矩阵是把它的系数矩阵添上一列所得,这一列是由方程组右边的常数组成的.
  矩阵的维数说明它包含的行数和列数.上面的增广矩阵(4)有3行4列,称为 3 × 4 3\times4 3×4(读作3行4列)矩阵.若 m , n m,n m,n是正整数, m × n m\times n m×n矩阵是一个有m行n列的数的矩形阵列.

解线性方程组

  解方程组的一般方法:把方程组用一个更容易解的等价方程组代替。可以用方程组中第一个方程中含 x 1 x_1 x1的项消去其他方程中含有 x 1 x_1 x1的项.然后用第二个方程组中含有 x 2 x_2 x2的项消去其他方程中含 x 2 x_2 x2的项,以此类推。最后得到一个很简单的等价方程组。
  用来化简线程方程组的三种基本变换是:把某个方程换成它与另一方程的倍数的和;交换两个方程的位置;把某一方程的所有项乘以一个非零常数。
例1 解方程组(3)
[ 1 − 2 1 0 0 2 − 8 8 5 0 5 10 ] \begin{bmatrix} 1&-2&1&0\\ 0&2&-8&8\\ 5&0&5&10 \end{bmatrix} 1052201850810
保留第一个方程中的 x 1 x_1 x1,把其他方程中的 x 1 x_1 x1消去.为此,把第一个方程乘以-5,加到第三个方程上得到:
[ 1 − 2 1 0 0 2 − 8 8 0 10 − 10 10 ] \begin{bmatrix} 1&-2&1&0\\ 0&2&-8&8\\ 0&10&-10&10 \end{bmatrix} 100221018100810
其次,把方程2乘以 1 2 \frac{1}{2} 21,使得 x 2 x_2 x2的系数变为1
[ 1 − 2 1 0 0 1 − 4 4 0 10 − 10 10 ] \begin{bmatrix} 1&-2&1&0\\ 0&1&-4&4\\ 0&10&-10&10 \end{bmatrix} 100211014100410
利用方程2中的 x 2 x_2 x2项消去方程3中的 10 x 2 10x_2 10x2
[ 1 − 2 1 0 0 1 − 4 4 0 0 30 − 30 ] \begin{bmatrix} 1&-2&1&0\\ 0&1&-4&4\\ 0&0&30&-30 \end{bmatrix} 10021014300430
现在,将方程3乘以 1 30 \frac{1}{30} 301以得到1作为 x 3 x_3 x3的系数。
[ 1 − 2 1 0 0 1 − 4 4 0 0 1 − 1 ] \begin{bmatrix} 1&-2&1&0\\ 0&1&-4&4\\ 0&0&1&-1 \end{bmatrix} 100210141041
现在想消去第一个方程中的 − 2 x 2 -2x_2 2x2,不过先利用方程3中的 x 3 x_3 x3消去第一个方程中的项 x 3 x_3 x3和第二个方程中的项 − 4 x 3 -4x_3 4x3更为有效。
[ 1 − 2 0 1 0 1 0 0 0 0 1 − 1 ] \begin{bmatrix} 1&-2&0&1\\ 0&1&0&0\\ 0&0&1&-1 \end{bmatrix} 100210001101
现在,在方程3中 x 3 x_3 x3的一列中只剩下一项,回头来用第二个方程的 x 2 x_2 x2项消去它上面的 − 2 x 2 -2x_2 2x2项.得到方程组:
[ 1 0 0 1 0 1 0 0 0 0 1 − 1 ] \begin{bmatrix} 1&0&0&1\\ 0&1&0&0\\ 0&0&1&-1 \end{bmatrix} 100010001101

{ x 1 = 1 x 2 = 0 x 3 = − 1 \left \{ \begin{array}{c} x_1=1 \\ x_2=0 \\ x_3=-1 \end{array} \right. x1=1x2=0x3=1
可以得出结果:原方程组的唯一解是 ( 1 , 0 , − 1 ) (1,0,-1) (1,0,1).
  例1说明了线程方程的变换对应于增广矩阵的行变换.前面所述的三种基本变换对应于增广矩阵的下列变换.

初等行变换

  1. (倍加变换)把某一行换成它本身与另一行的倍数的和.
  2. (对称变换)把两行对换.
  3. (倍乘变换)把某一行的所有元素乘以同一个非零数.

  行变换可施行于任何矩阵,不仅仅是对于线性方程组的增广矩阵.若其中一个矩阵可以经一系列初等行变换成另一个矩阵,则称两个矩阵为行等价.
  行变换是可逆的,若两行被对换,则再次对换它们就会还原为原来的状态;若某行乘以非零常数 c c c,则将所得的行乘以 1 c \frac{1}{c} c1就得出原来的行;最后,考虑涉及两行的倍加变换,例如第一行和第二行.假设把第一行的 c c c倍加到第二行得到新的第二行,那么“逆”变换就是把第一行的 − c -c c倍加到新的第二行上就得到原来的第二行.
  此时,更加关注于对一个线程方程组的增广矩阵进行行变换.假设一个线程方程组经过行变换成另外一个新的方程组,考虑每一种行变换,容易看出,原方程组的任何一个解仍是新的方程组的一个解.反之,因原方程组也可由新方程组经行变换得出,故新方程组的每个解也是原方程组的解.这也就证实了:

若两个线程方程组的增广矩阵是行等价的,则它们具有相同的解集.

存在与唯一性问题

  为确定某个线性方程组的解集属于哪种情况,需要提出以下两个问题.

线性方程组的两个基本问题

  1. 方程组是否相容,即它是否至少有一个解?
  2. 若它有解,它是否只有一个解,即解是否唯一?

例2 确定下列方程组是否有解:
{ x 1 − 2 x 2 + x 3 = 0 2 x 2 − 8 x 3 = 8 5 x 1 − 5 x 3 = 10 \left \{ \begin{array}{c} x_1-2x_2+x_3=0 \\ 2x_2-8x_3=8 \\ 5x_1-5x_3=10 \end{array} \right. x12x2+x3=02x28x3=85x15x3=10
将方程组通过行变换变成三角形
{ x 1 − 2 x 2 + x 3 = 0 x 2 − 4 x 3 = 4 x 3 = − 1 \left \{ \begin{array}{c} x_1-2x_2+x_3=0 \\ x_2-4x_3=4 \\ x_3=-1 \end{array} \right. x12x2+x3=0x24x3=4x3=1
这时已经确定了 x 3 x_3 x3,若把 x 3 x_3 x3的值带入方程2,就会确定 x 2 x_2 x2,因而可由方程1确定 x 1 x_1 x1,所以解是存在的,即方程组是相容的.(因为 x 3 x_3 x3只有一个可能的值,所以 x 2 x_2 x2由方程2唯一确定,而 x 1 x_1 x1由方程1唯一确定,所以解是唯一的.)

例3 确定下列方程组是否有解:
{ x 2 − 4 x 3 = 8 2 x 1 − 3 x 2 + 2 x 3 = 1 4 x 1 − 8 x 2 + 12 x 3 = 1 (5) \left \{ \begin{array}{c} x_2-4x_3=8 \\ 2x_1-3x_2+2x_3=1 \\ \tag{5} 4x_1-8x_2+12x_3=1 \end{array} \right. x24x3=82x13x2+2x3=14x18x2+12x3=1(5)
增广矩阵为:
[ 0 1 − 4 8 2 − 3 2 1 4 − 8 12 1 ] \begin{bmatrix} 0&1&-4&8\\ 2&-3&2&1\\ 4&-8&12&1 \end{bmatrix} 0241384212811
为从第一个方程得到 x 1 x_1 x1,对换第一行和第二行:
[ 2 − 3 2 1 0 1 − 4 8 4 − 8 12 1 ] \begin{bmatrix} 2&-3&2&1\\ 0&1&-4&8\\ 4&-8&12&1 \end{bmatrix} 2043182412181
为消去第三个方程的 4 x 1 4x_1 4x1,把第一行的-2倍加到第三行:
[ 2 − 3 2 1 0 1 − 4 8 0 − 2 8 − 1 ] (6) \begin{bmatrix} 2&-3&2&1\\ 0&1&-4&8\\ \tag{6} 0&-2&8&-1 \end{bmatrix} 200312248181 (6)
接下来用第二个方程的 x 2 x_2 x2项消去第三个方程的 − 2 x 2 -2x_2 2x2项,把第二行的2倍加到第三行上:
[ 2 − 3 2 1 0 1 − 4 8 0 0 0 15 ] (7) \begin{bmatrix} 2&-3&2&1\\ 0&1&-4&8\\ \tag{7} 0&0&0&15 \end{bmatrix} 2003102401815 (7)
现在增广矩阵已成为三角形式.为理解这个矩阵,将其转化为方程表示:
{ 2 x 1 − 3 x 2 + 2 x 3 = 1 x 2 − 4 x 3 = 8 0 = 15 (8) \left \{ \begin{array}{c} 2x_1-3x_2+2x_3=1 \\ x_2-4x_3=8 \\ \tag{8} 0=15 \end{array} \right. 2x13x2+2x3=1x24x3=80=15(8)
方程 0 = 15 0=15 0=15 0 x 1 + 0 x 2 + 0 x 3 = 15 0x_1+0x_2+0x_3=15 0x1+0x2+0x3=15的简写.这个三角形线性方程组显然是矛盾的,所以满足(8)的未知数 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3的值是不可能存在的,因等式 0 = 15 0=15 0=15不可能成立。由于(8)和(5)有同样的解集,故原方程组是不相容的(即无解).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值