DTLN网络模型学习

本文介绍了一种创新的实时噪声抑制方法,即双信号变换LSTM网络,它利用STFT分析和LSTM层进行信号处理,通过两个核心协同工作,提高噪声抑制效果。模型结构包括即时层规范化和两个阶段的信号转换,旨在实现实时性能。研究者提供了详细的架构图和实时特性的考虑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文题目:Dual-Signal Transformation LSTM Network for Real-Time Noise Suppression

用于实时噪声抑制的双信号转换 LSTM 网络

论文地址:https://arxiv.org/abs/2005.07551

本文提出的模型级联两个分离核,第一个具有 STFT 信号变换,使用第一个内核创建稳健的幅度估计,并使第二个内核能够进一步增强具有相位信息的信号。

图1:模型架构

本文介绍的堆叠双信号变换 LSTM 网络架构有两个分离核心,包含两个 LSTM 层,后跟一个全连接 (FC) 层和一个 sigmoid 激活以创建掩码输出。第一个分离核心使用STFT分析和综合基地。由 FC 层和 sigmoid 激活预测的掩码乘以混合的幅度,并使用输入混合的相位转换回时域,但不重建波形。来自第一个网络的帧由 1D-Conv 层处理以创建特征表示。特征表示在被馈送到第二个分离核心之前由归一化层处理。第二个核心的预测掩码与特征表示的非标准化版本相乘。结果用作 1D-Conv 层的输入,用于将估计表示转换回时域。在最后一步中,通过重叠和相加过程重建信号。该架构如图 1 所示。

为了考虑模型的实时特性,使用了即时层规范化 (iLN)。即时层归一化类似于标准层归一化,并在[22]中作为逐通道层归一化引入。所有帧都单独归一化,没有随时间累积统计数据,并使用相同的可学习参数进行缩放。在目前的工作中,这种归一化方案被称为即时层归一化,以区别于累积层归一化 。

### 关于语音增强中使用的CNN技术 #### 背景介绍 语音增强的目标是从含噪语音信号中恢复清晰的语音信号,提升语音的质量和可懂度[^2]。随着深度学习的发展,卷积神经网络(Convolutional Neural Networks, CNNs)被引入到语音增强领域,用于提取语音信号的空间特征并改善增强效果。 #### CNN在语音增强中的应用原理 CNN通过局部感知野和权值共享的特点,能够有效捕捉语音信号的时间-频率特性。具体而言,CNN可以将语音信号转化为时间-频率表示形式(如短时傅里叶变换STFT),并通过多层卷积操作逐步提取高层次的特征[^3]。这些特征随后可用于预测干净语音的频谱分量或噪声掩蔽参数。 #### 代表性的CNN架构及其改进 一种常见的CNN结构是结合LSTM(Long Short-Term Memory networks)形成混合模型(CNN-LSTM)。这种模型首先利用CNN提取语音信号的静态特征,再由LSTM捕获长时间依赖关系,从而更好地适应复杂的语音环境[^4]。此外,一些研究还提出了路径(dual-path)机制来进一步优化时频建模能力[^5]。 #### 相关论文与代码资源 1. **Dual-signal Transformation LSTM Network (DTLN)** DTLN是一种典型的监督型语音增强方法,它采用了两阶段框架:第一阶段专注于抑制宽带噪声;第二阶段则针对残留噪声进行精细调整。GitHub上有开源实现可供参考。 2. **UFOMER-based Single-channel Speech Enhancement and Dereverberation** 此工作创新性地引入了Conformer架构,并对其自注意力模块进行了重路径扩展,增强了对时序和频带信息的同时处理能力。项目主页提供了详细的算法描述以及训练脚本。 3. **End-to-end Source Separation Research: Current Status, Progressions, and Future Directions** 这篇综述文章讨论了端到端声源分离的研究趋势,其中也涵盖了多种基于CNN的方法论进展[^1]。读者可以从文中链接访问多个经典项目的源码仓库。 #### 示例代码片段 以下是简单的CNN应用于语音增强的数据预处理部分示例: ```python import numpy as np from scipy.signal import stft def preprocess_audio(audio_signal, fs=16000): """ 将音频信号转换为适合CNN输入的形式 参数: audio_signal (np.ndarray): 输入的一维音频数组 fs (int): 采样率,默认16kHz 返回: spectrogram (np.ndarray): STFT后的二维频谱图 """ f, t, Zxx = stft(audio_signal, fs=fs, nperseg=256) magnitude = np.abs(Zxx) phase = np.angle(Zxx) return magnitude, phase ``` 此函数实现了从原始音频到频谱图的映射过程,后续即可送入构建好的CNN模型中完成训练或推理任务。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值