DTLN网络模型学习

本文介绍了一种创新的实时噪声抑制方法,即双信号变换LSTM网络,它利用STFT分析和LSTM层进行信号处理,通过两个核心协同工作,提高噪声抑制效果。模型结构包括即时层规范化和两个阶段的信号转换,旨在实现实时性能。研究者提供了详细的架构图和实时特性的考虑。
摘要由CSDN通过智能技术生成

论文题目:Dual-Signal Transformation LSTM Network for Real-Time Noise Suppression

用于实时噪声抑制的双信号转换 LSTM 网络

论文地址:https://arxiv.org/abs/2005.07551

本文提出的模型级联两个分离核,第一个具有 STFT 信号变换,使用第一个内核创建稳健的幅度估计,并使第二个内核能够进一步增强具有相位信息的信号。

图1:模型架构

本文介绍的堆叠双信号变换 LSTM 网络架构有两个分离核心,包含两个 LSTM 层,后跟一个全连接 (FC) 层和一个 sigmoid 激活以创建掩码输出。第一个分离核心使用STFT分析和综合基地。由 FC 层和 sigmoid 激活预测的掩码乘以混合的幅度,并使用输入混合的相位转换回时域,但不重建波形。来自第一个网络的帧由 1D-Conv 层处理以创建特征表示。特征表示在被馈送到第二个分离核心之前由归一化层处理。第二个核心的预测掩码与特征表示的非标准化版本相乘。结果用作 1D-Conv 层的输入,用于将估计表示转换回时域。在最后一步中,通过重叠和相加过程重建信号。该架构如图 1 所示。

为了考虑模型的实时特性,使用了即时层规范化 (iLN)。即时层归一化类似于标准层归一化,并在[22]中作为逐通道层归一化引入。所有帧都单独归一化,没有随时间累积统计数据,并使用相同的可学习参数进行缩放。在目前的工作中,这种归一化方案被称为即时层归一化,以区别于累积层归一化 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值