总结一下近十年关于NS方程的相关研究成果,后面会继续补充。首先将问题分为两大类:1、有界域上的问题 2、无界域上的问题。我们先来看有界域的情况。
1、第一篇(PAN, RONGHUA, ZHANG, WEIZHE. COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH TEMPERATURE DEPENDENT HEAT CONDUCTIVITY[J]. Communications in mathematical sciences,2015,13(2):401-425.)主要证明了当热传导系数依赖于温度时( κ = θ b \kappa =\theta^{b} κ=θb), 一维可压缩NS方程强解的整体存在性。
(1)我们来看一下方程的具体形式以及初边值。
{ v t − u x = 0 u t + p x = ( μ u x v ) x ( e + 1 2 u 2 ) t + ( p u ) x = [ ( κ θ x + μ u u x ) v ] x ( v , u , θ ) ( x , 0 ) = ( v 0 , u 0 , θ 0 ) ( x ) u ( 0 , t ) = u ( 1 , t ) = 0 , θ x ( 0 , t ) = θ x ( 1 , t ) = 0 \begin{cases}v_{t}-u_{x}=0&\\ u_{t}+p_{x}=\left( \frac{\mu u_{x}}{v} \right)_{x} &\\ \left( e+\frac{1}{2} u^{2}\right)_{t} +\left( pu\right)_{x} =\left[ \frac{\left( \kappa \theta_{x} +\mu uu_{x}\right) }{v} \right]_{x} &\\ \left( v,u,\theta \right) \left( x,0\right) =\left( v_{0},u_{0},\theta_{0} \right) \left( x\right) &\\ u\left( 0,t\right) =u\left( 1,t\right) =0,\ \theta_{x} \left( 0,t\right) =\theta_{x} \left( 1,t\right) =0&\end{cases} ⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧vt−ux=0ut+px=(vμux)x(e+21u2)t+(pu)x=[v(κθx+μuu