0. numerical differentiation
英文名如上所示
0.1 梯度决定信息前进的方向
0.2 什么是数值微分
就是用数值方法近似求解函数的导数的过程
1. 完整代码
# coding: utf-8
import numpy as np
import matplotlib.pylab as plt
# 函数求导的程序
def numerical_diff(f, x):
h = 1e-4 # 0.0001
return (f(x+h) - f(x-h)) / (2*h)
# 原函数
def function_1(x):
return 0.01*x**2 + 0.1*x
# 函数切线
def tangent_line(f, x):
d = numerical_diff(f, x)
print(d) # d表示斜率
y = f(x) - d*x
return lambda t: d*t + y
# 使用需要的x和y的点来画图
x = np.arange(0.0, 20.0, 0.1)
y = function_1(x)
plt.xlabel("x")
plt.ylabel("f(x)")
#
tf = tangent_line(function_1, 5)
y2 = tf(x)
plt.plot(x, y)
plt.plot(x, y2)
plt.show()