SVM算法研究

SVM算法研究

一、线性数据处理

1、未标准化的原始数据显示

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC

iris = datasets.load_iris()

X = iris.data
y = iris.target

X = X [y<2,:2] #只取y<2的类别,也就是0 1 并且只取前两个特征
y = y[y<2] # 只取y<2的类别

# 分别画出类别0和1的点
plt.scatter(X[y==0,0],X[y==0,1],color='red') 
plt.scatter(X[y==1,0],X[y==1,1],color='blue')
plt.show()

# 标准化
standardScaler = StandardScaler()

standardScaler.fit(X) #计算训练数据的均值和方差
X_standard = standardScaler.transform(X) #再用scaler中的均值和方差来转换X,使X标准化

svc = LinearSVC(C=1e9) #线性SVM分类器
svc.fit(X_standard,y) # 训练svm

原始数据显示结果如下:
在这里插入图片描述

2、决策边界绘制

def plot_decision_boundary(model, axis):
    
    x0, x1 = np.meshgrid(
        np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1,1),
        np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1,1)
    )
    X_new = np.c_[x0.ravel(), x1.ravel()]
    
    y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape)
    
    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    
    plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)


# 绘制决策边界
plot_decision_boundary(svc,axis=[-3,3,-3,3]) # x,y轴都在-3到3之间
# 绘制原始数据
plt.scatter(X_standard[y==0,0],X_standard[y==0,1],color='red') 
plt.scatter(X_standard[y==1,0],X_standard[y==1,1],color='blue')
plt.show()

边界绘制结果显示如下:
在这里插入图片描述

3、再次实例化一个SVC,并传入一个较小的 CC

svc2 = LinearSVC(C=0.01)
svc2.fit(X_standard,y)
plot_decision_boundary(svc2,axis=[-3,3,-3,3]) # x,y轴都在-3到3之间
# 绘制原始数据
plt.scatter(X_standard[y==0,0],X_standard[y==0,1],color='red') 
plt.scatter(X_standard[y==1,0],X_standard[y==1,1],color='blue')
plt.show()

结果显示如下:
在这里插入图片描述
由两个图片可知,两次决策边界的绘制很明显存在差异 。

二、非线性数据处理

1、生成月亮数据

(1)月亮数据生成

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

X, y = datasets.make_moons() #使用生成的数据
print(X.shape) # (100,2)
print(y.shape) # (100,)

在这里插入图片描述

(2)月亮数据显示

plt.scatter(X[y==0,0],X[y==0,1]) 
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

月亮数据显示结果如下:
在这里插入图片描述

2、增加噪声点

X, y = datasets.make_moons(noise=0.15,random_state=777) #随机生成噪声点,random_state是随机种子,noise是方差

plt.scatter(X[y==0,0],X[y==0,1]) 
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

增加噪声点后,月亮数据集显示如下:
在这里插入图片描述

3、通过多项式特征的SVM分类

from sklearn.preprocessing import PolynomialFeatures,StandardScaler
from sklearn.svm import LinearSVC
from sklearn.pipeline import Pipeline

def PolynomialSVC(degree,C=1.0):
    return Pipeline([
        ("poly",PolynomialFeatures(degree=degree)),#生成多项式
        ("std_scaler",StandardScaler()),#标准化
        ("linearSVC",LinearSVC(C=C))#最后生成svm
    ])

poly_svc = PolynomialSVC(degree=3)
poly_svc.fit(X,y)

plot_decision_boundary(poly_svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1]) 
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

多项式分类结果如下:
在这里插入图片描述

4、高维空间线性SVM处理

我们还可以使用核技巧来对数据进行处理,使其维度提升,使原本线性不可分的数据,在高维空间变成线性可分

from sklearn.svm import SVC

def PolynomialKernelSVC(degree,C=1.0):
    return Pipeline([
        ("std_scaler",StandardScaler()),
        ("kernelSVC",SVC(kernel="poly")) # poly代表多项式特征
    ])

poly_kernel_svc = PolynomialKernelSVC(degree=3)
poly_kernel_svc.fit(X,y)

plot_decision_boundary(poly_kernel_svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1]) 
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

高维空间线性分类显示如下:
在这里插入图片描述
SVC(kernel=“poly”) 中参数 kernel ,就是核函数

三、核函数

1、核函数定义

核函数包括线性核函数、多项式核函数、高斯核函数等,其中高斯核函数最常用,可以将数据映射到无穷维,也叫做径向基函数(Radial Basis Function 简称 RBF),是某种沿径向对称的标量函数。
在机器学习中常用的核函数,一般有这么几类,也就是LibSVM中自带的这几类:

  1. 线性:K(v_1,v_2)= < v 1 , v 2 > <v_1,v_2> <v1,v2>
  2. 多项式:K(v_1,v_2)= ( γ < v 1 , v 2 > + c ) n (\gamma<v_1,v_2>+c)^n (γ<v1,v2>+c)n
  3. Radial basis function: K ( v 1 , v 2 ) = exp ⁡ ( − γ ∣ ∣ v 1 − v 2 ∣ ∣ 2 ) K(v_1,v_2)=\exp(-\gamma||v_1-v_2||^2) K(v1,v2)=exp(γv1v22)
  4. Sigmoid:K(v_1,v_2)= tan ⁡ h ( γ < v 1 , v 2 > + c ) \tan h(\gamma<v_1,v_2>+c) tanh(γ<v1,v2>+c)

2、高斯核函数

高斯函数
g ( x ) = 1 σ 2 π e − 1 2 ( x − μ σ ) 2 g(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} g(x)=σ2π 1e21(σxμ)2
高斯核函数和高斯函数很像
高斯核函数:
K ( v 1 , v 2 ) = exp ⁡ ( − γ ∣ ∣ v 1 − v 2 ∣ ∣ 2 ) K(v_1,v_2)=\exp(-\gamma||v_1-v_2||^2) K(v1,v2)=exp(γv1v22)
高斯核函数的本质是将每个样本点映射到一个无穷多维度的特征空间中。
核函数都是依靠升维使得原本线性不可分的数据变得线性可分。

3、测试数据集生成

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(-4,5,1)#生成测试数据
y = np.array((x >= -2 ) & (x <= 2),dtype='int')

plt.scatter(x[y==0],[0]*len(x[y==0]))# x取y=0的点, y取0,有多少个x,就有多少个y
plt.scatter(x[y==1],[0]*len(x[y==1]))
plt.show()

测试数据显示如下:
在这里插入图片描述

4、数据集升维处理

# 高斯核函数
def gaussian(x,l):
    gamma = 1.0
    return np.exp(-gamma * (x -l)**2)

l1,l2 = -1,1
X_new = np.empty((len(x),2)) #len(x) ,2
for i,data in enumerate(x):
    X_new[i,0] = gaussian(data,l1)
    X_new[i,1] = gaussian(data,l2)
    
plt.scatter(X_new[y==0,0],X_new[y==0,1])
plt.scatter(X_new[y==1,0],X_new[y==1,1])
plt.show()

处理后数据集显示如下:
在这里插入图片描述
由数据集显示可知,升维后很容易对数据集进行分类

四、超参数

1、超参数定义

超参数:

  • 定义关于模型的更高层次的概念,如复杂性或学习能力。
  • 不能直接从标准模型培训过程中的数据中学习,需要预先定义。
  • 可以通过设置不同的值,训练不同的模型和选择更好的测试值来决定

高斯函数
g ( x ) = 1 σ 2 π e − 1 2 ( x − μ σ ) 2 g(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} g(x)=σ2π 1e21(σxμ)2
在高斯函数中, σ \sigma σ 越大,分布就越宽
在这里插入图片描述
核函数中的 γ \gamma γ类似于 1 2 σ 2 2 σ 21 \frac{1}{2\sigma^2} 2 σ 2 1 2σ212σ21

所以, γ \gamma γ越大,高斯分布越窄; γ \gamma γ 越小,高斯分布越宽。

接下来用代码来演示下 γ \gamma γ的取值对结果的影响。

2、生成数据集

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

X,y = datasets.make_moons(noise=0.15,random_state=777)
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

生成如下数据集:
在这里插入图片描述

3、定义一个RBF核的SVM

from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline

def RBFKernelSVC(gamma=1.0):
    return Pipeline([
        ('std_scaler',StandardScaler()),
        ('svc',SVC(kernel='rbf',gamma=gamma))
    ])

svc = RBFKernelSVC()
svc.fit(X,y)

plot_decision_boundary(svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1]) 
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

显示结果如下:
在这里插入图片描述
该图片显示下: γ \gamma γ=1.0

4、修改 γ \gamma γ

(1) γ \gamma γ=100

from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline

def RBFKernelSVC(gamma=1.0):
    return Pipeline([
        ('std_scaler',StandardScaler()),
        ('svc',SVC(kernel='rbf',gamma=gamma))
    ])

svc = RBFKernelSVC(100)
svc.fit(X,y)

plot_decision_boundary(svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1]) 
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

在这里插入图片描述
该图片显示中: γ \gamma γ=100
由两个图片比较可知: γ \gamma γ=100时,数据集分类更准确。

(2) γ \gamma γ=10

from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline

def RBFKernelSVC(gamma=1.0):
    return Pipeline([
        ('std_scaler',StandardScaler()),
        ('svc',SVC(kernel='rbf',gamma=gamma))
    ])

svc = RBFKernelSVC(10)
svc.fit(X,y)

plot_decision_boundary(svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1]) 
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

在这里插入图片描述

(3) γ \gamma γ=0.1

from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline

def RBFKernelSVC(gamma=1.0):
    return Pipeline([
        ('std_scaler',StandardScaler()),
        ('svc',SVC(kernel='rbf',gamma=gamma))
    ])

svc = RBFKernelSVC(0.1)
svc.fit(X,y)

plot_decision_boundary(svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1]) 
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

boston = datasets.load_boston()
X = boston.data
y = boston.target

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=777) # 把数据集拆分成训练数据和测试数据

from sklearn.svm import LinearSVR 
from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler

def StandardLinearSVR(epsilon=0.1):
    return Pipeline([
        ('std_scaler',StandardScaler()),
        ('linearSVR',LinearSVR(epsilon=epsilon))
    ])

svr = StandardLinearSVR()
svr.fit(X_train,y_train)

svr.score(X_test,y_test) #0.6989278257702748

程序运行结果如下:
在这里插入图片描述

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: SVM是一种常用的机器学习算法,而sklearn.svm.svc是SVM算法在Python中的实现。超参数调参是指在使用SVM算法时,调整一些参数以达到更好的性能。常见的超参数包括C、kernel、gamma等。调参的目的是使模型更准确、更稳定。 ### 回答2: 在使用sklearn库中的支持向量机分类模型SVC时,超参数调参是一个非常重要的步骤。超参数的设定往往影响着模型的拟合效果和泛化能力,因此对于不同的数据集和问题,需要进行不同的超参数设定。下面将从SVC模型的主要超参数和超参数调参方法两个方面进行介绍。 一、SVC模型的主要超参数: 1.内核函数(kernel):SVC支持多种核函数,包括线性核函数、多项式核函数、径向基核函数、sigmoid核函数等。 2.惩罚参数(C):它是为了对损失函数进行调节而引入的,C越小,对误分类的惩罚程度也就越小,允许更多的样本误分类,是模型的偏差较大,方差较小,容易欠拟合;C越大,对误分类的惩罚程度也就越大,强制模型尽可能正确地分类每个样本,是模型的偏差较小,方差较大,容易过拟合。 3.核函数参数(gamma):它与核函数有关,主要用于控制样本点与决策边界的“松弛度”(决策边界向外延伸的距离),gamma越小,决策边界的曲线越平滑,模型的复杂度相对减小,泛化能力相对增强,是模型的约束力强,容易欠拟合;gamma越大,决策边界的曲线越复杂,模型的复杂度相对加强,精度相对增加,但泛化能力会减弱,是模型的约束力小,容易过拟合。 二、超参数调参方法: 1.网格搜索(Grid Search):常见的方法是穷举搜索超参数的所有组合,计算模型在交叉验证的训练集上的精度或者其他评价指标,找到最佳的超参数组合。由于不同超参数采用的取值范围可能存在差异性,因此用网格搜索并不一定能取得最优结果,其计算开销也很大。 2.随机搜索(Randomized Search):与网格搜索相比,随机搜索是从超参数的分布中采样,每次只搜索少量的超参数组合,相对于网格搜索,它可以在较少时间内训练更多的模型,从而探索更多的超参数组合,具有一定的优势。 3.贝叶斯优化(Bayesian Optimization):这种方法是试图将搜索过程转变为一个优化问题,通过不断学习、更新一个超参数的先验分布,来指引搜索方向,能够更有效地探索超参数空间中的好的区域,有可能取得更好的结果,但是需要一定的理论支持以及计算开销和技巧。 总而言之,SVC是一种强大的分类模型,超参数调参不同方法的运用,将可以取得更好的模型性能。 ### 回答3: 在使用sklearn.svm.svc进行分类时,设置合适的超参数值会直接影响模型的预测能力和训练效率,因此超参数调参是非常重要的。常见的超参数包括C、kernel、gamma、degree、coef0等。 C是正则化系数,在参数调优中通常使用交叉验证来进行选择,确保虽然满足所有的数据拟合,但不是过拟合。常见的取值范围为10的n次方(n为负数)至10的n次方。 kernel参数指定可以使用的内核类型:‘linear’、‘poly’、‘rbf’、‘sigmoid’、‘precomputed'等。其中,‘rbf’和‘poly’内核方法比较常用。对于‘rbf’内核,需要调整的一个参数是gamma。gamma越大,模型的受较远的数据点影响的程度就越大;gamma越小,模型的受较远的数据点影响的程度就越小。一般建议使用默认的gamma值,如果存在过拟合问题,可以适当调小gamma值。对于‘poly’内核,还需要调整的一个参数是degree,即多项式的次数。 coef0系数是在多项式内核中与高阶项相关的系数。增加这个参数会影响模型的拟合效果,可能会增加训练时间,但如果过大,则可能会导致模型的过拟合。可以使用グリッド搜索(GridSearchCV)函数来通过交叉验证实现参数的自动调整。 总的来说,调整SVM模型的超参数通常是一种实验性的过程,需要多次调整参数进行模型的训练和评估,找到最优的超参数组合,并针对数据进行优化调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值