图像处理学习笔记-07-小波和多分辨率处理02

一维小波函数

小波级数展开、离散小波变换、连续小波变换分别对应着傅里叶域里面的傅里叶级数展开、离散傅里叶变换、积分傅里叶变换

小波级数展开

f ( x ) ∈ L 2 f(x) \in L^2 f(x)L2,可以在子空间 V j 0 V_{j_0} Vj0中用尺度函数展开和在子空间 W j 0 , W j 0 + 1 , ⋯ W_{j_0},W_{j_0 + 1},\cdots Wj0,Wj0+1,中用某些数量的小波函数展开来表示:
f ( x ) = ∑ k c j 0 ( k ) φ j 0 , k ( x ) + ∑ j = j 0 ∞ ∑ k d j ( k ) ψ j , k ( x ) f(x) = \sum_kc_{j_0}(k)\varphi_{j_0,k}(x) + \sum_{j = j_0}^\infty\sum_kd_j(k)\psi_{j,k}(x) f(x)=kcj0(k)φj0,k(x)+j=j0kdj(k)ψj,k(x)
其中 j 0 j_0 j0是任意的开始尺度, c j 0 ( k ) c_{j_0}(k) cj0(k)称为近似和或尺度系数, d j ( k ) d_j(k) dj(k)称为细节和或小波系数,如果展开函数形成正交基或紧框架,那么系数可以如下计算:
c j 0 ( k ) = < f ( x ) , φ j 0 , k ( x ) > = ∫ f ( x ) φ j 0 , k ( x ) d x d j ( k ) = < f ( x ) , ψ j , k ( x ) > = ∫ f ( x ) ψ j , k ( x ) d x c_{j_0}(k) = \left<f(x),\varphi_{j_0,k}(x)\right> = \int f(x)\varphi_{j_0,k}(x)dx \\ d_j(k) = \left<f(x),\psi_{j,k}(x)\right> = \int f(x)\psi_{j,k}(x)dx cj0(k)=f(x),φj0,k(x)=f(x)φj0,k(x)dxdj(k)=f(x),ψj,k(x)=f(x)ψj,k(x)dx
如果展开函数是双正交基的一部分,这些等式中的 φ , ψ \varphi,\psi φ,ψ需要用其对偶函数来代替

离散小波变换

对应离散函数 f ( n ) = f ( x 0 + n Δ x ) , n = 0 , 1 , 2 , ⋯   , M − 1 f(n) = f(x_0 + n\Delta x),n = 0,1,2,\cdots,M-1 f(n)=f(x0+nΔx),n=0,1,2,,M1,对连续函数 f ( x ) f(x) f(x)的小波级数展开系数就变为序列 f ( n ) f(n) f(n)的正向离散小波变换DWT系数:
W φ ( j 0 , k ) = 1 M ∑ n f ( n ) φ j 0 , k ( n ) W ψ ( j , k ) = 1 M ∑ n f ( n ) ψ j , k ( n ) , j ≥ j 0 W_{\varphi}(j_0,k) = \frac{1}{\sqrt M}\sum_nf(n)\varphi_{j_0,k}(n) \\ W_\psi(j,k) = \frac{1}{\sqrt M}\sum_n f(n)\psi_{j,k}(n),j \geq j_0 Wφ(j0,k)=M 1nf(n)φj0,k(n)Wψ(j,k)=M 1nf(n)ψj,k(n),jj0
在这些等式中, φ j 0 , k ( n ) , ψ j , k ( n ) \varphi_{j_0,k}(n),\psi_{j,k}(n) φj0,k(n),ψj,k(n)是基函数 φ j 0 , k ( x ) , ψ j , k ( x ) \varphi_{j_0,k}(x),\psi_{j,k}(x) φj0,k(x),ψj,k(x)的取样形式,反向DWT是:
f ( n ) = 1 M ∑ k W φ ( j 0 , k ) φ j 0 , k ( n ) + 1 M ∑ j = j 0 ∞ ∑ k W ψ ( j , k ) ψ j , k ( n ) f(n) = \frac{1}{\sqrt M}\sum_kW_\varphi(j_0,k)\varphi_{j_0,k}(n) + \frac{1}{\sqrt M}\sum_{j = j_0}^\infty\sum_kW_\psi(j,k)\psi_{j,k}(n) f(n)=M 1kWφ(j0,k)φj0,k(n)+M 1j=j0kWψ(j,k)ψj,k(n)
通常取 j 0 = 0 , M = 2 J j_0 = 0,M = 2^J j0=0,M=2J为2的幂,在上式中, n = 0 , 1 , 2 , ⋯   , M − 1 , j = 0 , 1 , 2 , ⋯   , J − 1 , k = 0 , 1 , 2 , ⋯   , 2 j − 1 n = 0,1,2,\cdots,M-1,j = 0, 1,2,\cdots,J-1,k = 0,1,2,\cdots,2^j - 1 n=0,1,2,,M1,j=0,1,2,,J1,k=0,1,2,,2j1,对于哈尔小波,变换中采用的离散尺度和小波函数即基函数和之前 M × M M \times M M×M的哈尔变换矩阵的行相对应,上面的式子只对正交基和紧框架有效,对于双正交基,需要使用相应的对偶函数

连续小波变换

连续的平方可积函数 f ( x ) f(x) f(x)的连续小波变换与实数值小波 ψ ( x ) \psi(x) ψ(x)的关系定义为:
W ψ ( s , τ ) = ∫ − ∞ ∞ f ( x ) ψ s , τ ( x ) d x W_{\psi}(s,\tau) = \int_{-\infty}^\infty f(x)\psi_{s,\tau}(x)dx Wψ(s,τ)=f(x)ψs,τ(x)dx
其中:
ψ s , τ ( x ) = 1 s ψ ( x − τ s ) \psi_{s,\tau}(x) = \frac{1}{\sqrt{s}}\psi\left(\frac{x - \tau}{s}\right) ψs,τ(x)=s 1ψ(sxτ)
s , τ s,\tau s,τ分别是尺度参数和平移参数,给定 W ψ ( s , τ ) W_\psi(s,\tau) Wψ(s,τ),就可以使用连续小波反变换得到 f ( x ) f(x) f(x):
f ( x ) = 1 C ψ ∫ 0 ∞ ∫ − ∞ ∞ W ψ ( s , τ ) ψ s , τ ( x ) s 2 d τ d s f(x) = \frac{1}{C_\psi}\int_0^\infty\int_{-\infty}^\infty W_\psi(s,\tau)\frac{\psi_{s,\tau}(x)}{s^2}d\tau ds f(x)=Cψ10Wψ(s,τ)s2ψs,τ(x)dτds
其中:
C ψ = ∫ − ∞ ∞ ∣ Ψ ( μ ) ∣ 2 ∣ μ ∣ d μ C_\psi = \int_{-\infty}^\infty\frac{|\mathbf{\Psi}(\mu)|^2}{|\mu|}d\mu Cψ=μΨ(μ)2dμ
Ψ ( μ ) \mathbf{\Psi}(\mu) Ψ(μ) ψ ( x ) \psi(x) ψ(x)的傅里叶变换

快速小波变换FWT

类似于子带编码方案,首先考虑多分辨率详细的等式:
φ ( x ) = ∑ n h φ ( n ) 2 φ ( 2 x − n ) \varphi(x) = \sum_n h_\varphi (n)\sqrt{2}\varphi(2x - n) φ(x)=nhφ(n)2 φ(2xn)
2 j 2^j 2j x x x尺度化,用 k k k对它平移,并令 m = 2 k + n m = 2k + n m=2k+n,给出:
φ ( 2 j x − k ) = ∑ k h φ ( n ) 2 φ ( 2 ( 2 j x − k ) − n ) = ∑ n h φ ( n ) 2 φ ( 2 j + 1 x − 2 k − n ) = ∑ m h φ ( m − 2 k ) 2 φ ( 2 j + 1 x − m ) \begin{aligned} \varphi(2^j x - k) &= \sum_kh_\varphi(n)\sqrt{2}\varphi(2(2^jx - k) - n) \\ &= \sum_nh_\varphi(n)\sqrt{2}\varphi(2^{j + 1}x - 2k - n) \\ &= \sum_mh_\varphi(m - 2k)\sqrt{2}\varphi(2^{j + 1}x - m) \end{aligned} φ(2jxk)=khφ(n)2 φ(2(2jxk)n)=nhφ(n)2 φ(2j+1x2kn)=mhφ(m2k)2 φ(2j+1xm)
相似的可以得到小波函数:
ψ ( 2 j x − k ) = ∑ m h ψ ( m − 2 k ) 2 φ ( 2 j + 1 x − m ) \psi(2^j x - k) = \sum_mh_\psi(m - 2k)\sqrt{2}\varphi(2^{j + 1}x - m) ψ(2jxk)=mhψ(m2k)2 φ(2j+1xm)
有小波定义式如下:
d j ( k ) = ∫ f ( x ) 2 j 2 ψ ( 2 j x − k ) d x d_j(k) = \int f(x)2^\frac j2\psi(2^j x - k)dx dj(k)=f(x)22jψ(2jxk)dx
综合起来:
d j ( k ) = ∫ f ( x ) 2 j 2 [ ∑ m h ψ ( m − 2 k ) 2 φ ( 2 j + 1 x − m ) ] d x d_j(k) = \int f(x)2^\frac j2\left[\sum_mh_\psi(m - 2k)\sqrt{2}\varphi(2^{j + 1}x - m)\right]dx dj(k)=f(x)22j[mhψ(m2k)2 φ(2j+1xm)]dx
交换积分和求和的顺序:
d j ( k ) = ∑ m h ψ ( m − 2 k ) [ ∫ f ( x ) 2 j + 1 2 φ ( 2 j + 1 x − m ) ] d_j(k) = \sum_m h_\psi(m - 2k)\left[\int f(x)2^{\frac{j + 1}{2}}\varphi(2^{j + 1}x - m)\right] dj(k)=mhψ(m2k)[f(x)22j+1φ(2j+1xm)]
可以看到括号中的量为 j 0 = j + 1 , k = m j_0 = j + 1,k = m j0=j+1,k=m时的 c j 0 ( k ) c_{j_0}(k) cj0(k)
d j ( k ) = ∑ m h ψ ( m − 2 k ) c j + 1 ( m ) d_j(k) = \sum_m h_\psi(m - 2k)c_{j + 1}(m) dj(k)=mhψ(m2k)cj+1(m)
也就是尺度 j j j的细节系数是尺度 j + 1 j + 1 j+1的近似函数的系数,类似的可以得到:
c j ( k ) = ∑ m h φ ( m − 2 k ) c j + 1 ( m ) c_j(k) = \sum_mh_\varphi(m - 2k)c_{j + 1}(m) cj(k)=mhφ(m2k)cj+1(m)
f ( x ) f(x) f(x)为离散函数的时候,因为小波级数展开的系数 c j ( k ) , d j ( k ) c_j(k),d_j(k) cj(k),dj(k)变为DWT的系数 W φ ( j , k ) , W ψ ( j , k ) W_\varphi(j,k),W_\psi(j,k) Wφ(j,k),Wψ(j,k),所以:
W ψ ( j , k ) = ∑ m h ψ ( m − 2 k ) W φ ( j + 1 , m ) W φ ( j , k ) = ∑ m h φ ( m − 2 k ) W φ ( j + 1 , m ) W_\psi(j,k) = \sum_mh_\psi(m - 2k)W_\varphi(j + 1,m) \\ W_\varphi(j,k) = \sum_mh_\varphi(m - 2k)W_\varphi(j + 1, m) Wψ(j,k)=mhψ(m2k)Wφ(j+1,m)Wφ(j,k)=mhφ(m2k)Wφ(j+1,m)
上式揭示了相邻尺度DWT系数间的关系,DWT的系数 W φ ( j , k ) , W ψ ( j , k ) W_\varphi(j,k),W_\psi(j,k) Wφ(j,k),Wψ(j,k)可以用 W φ ( j + 1 , k ) W_\varphi(j + 1, k) Wφ(j+1,k)分别与顺序倒置尺度和小波向量 h φ ( − n ) , h ψ ( − n ) h_\varphi(-n),h_\psi(-n) hφ(n),hψ(n)进行卷积操作,然后对结果进行下采样来计算:
W ψ ( j , k ) = h ψ ( − n ) ★ W φ ( j + 1 , n ) ∣ n = 2 k , k ≥ 0 W φ ( j , k ) = h φ ( − n ) ★ W φ ( j + 1 , n ) ∣ n = 2 k , k ≥ 0 W_\psi(j,k) = h_\psi(-n) ★ W_\varphi(j + 1, n)|_{n = 2k,k\geq 0} \\ W_\varphi(j,k) = h_\varphi(-n) ★ W_\varphi(j + 1, n)|_{n = 2k,k\geq 0} Wψ(j,k)=hψ(n)Wφ(j+1,n)n=2k,k0Wφ(j,k)=hφ(n)Wφ(j+1,n)n=2k,k0
FWT分析滤波器组
上述过程和子带编码类似, h 0 ( n ) = h φ ( − n ) , h 1 ( n ) = h ψ ( − n ) h_0(n) = h_\varphi(-n),h_1(n) = h_\psi(-n) h0(n)=hφ(n),h1(n)=hψ(n),得到的 W φ ( j , k ) , W ψ ( j , k ) W_\varphi(j,k),W_\psi(j,k) Wφ(j,k),Wψ(j,k)分别代表低通和高通分量,使用FWT约要求 O ( M log ⁡ 2 M ) O(M\log_2 M) O(Mlog2M)次操作,通常,我们选择 f ( x ) f(x) f(x) 2 J 2^J 2J个样本,并用 P P P个滤波器组在尺度 J − 1 , J − 2 , ⋯   , J − P J - 1,J - 2,\cdots,J - P J1,J2,,JP处生成一个 P P P尺度FWT,首先计算最高尺度即 J − 1 J - 1 J1的系数,最后计算最低尺度 J − P J - P JP的系数,假设 f ( x ) f(x) f(x)的取样频率合适,那么取样样本时在该取样分辨率下的尺度系数的良好近似,可以作为起始高分辨率尺度系数的输入,类似的,我们可以得到从正变换的结果快速反变换结果,相当于二带宽子带编码的综合过程,由分析过程 h 0 ( n ) = h φ ( − n ) , h 1 ( n ) = h ψ ( − n ) h_0(n) = h_\varphi(-n),h_1(n) = h_\psi(-n) h0(n)=hφ(n),h1(n)=hψ(n),得到 g 0 ( n ) = h 0 ( − n ) = h φ ( n ) , g 1 ( n ) = h 1 ( − n ) = h ψ ( n ) g_0(n) = h_0(-n) = h_\varphi(n),g_1(n) = h_1(-n) = h_\psi(n) g0(n)=h0(n)=hφ(n),g1(n)=h1(n)=hψ(n),反变换 F W T − 1 FWT^{-1} FWT1的滤波器组执行下述计算:
W φ ( j + 1 , k ) = h φ ( k ) ★ W φ 2 ↑ ( j , k ) + h ψ ( k ) ★ W ψ 2 ↑ ( j , k ) ∣ k ≥ 0 W_\varphi(j + 1, k) = h_\varphi(k) ★ W_\varphi^{2\uparrow}(j,k) + h_\psi(k) ★ W_\psi^{2\uparrow}(j,k)|_{k \geq 0} Wφ(j+1,k)=hφ(k)Wφ2(j,k)+hψ(k)Wψ2(j,k)k0
其中 W 2 ↑ W^{2\uparrow} W2表示基2的上取样,上取样通过插入0使得长度变为原来的两倍来完成的,之后上取样的系数和 h φ ( n ) , h ψ ( n ) h_\varphi(n),h_\psi(n) hφ(n),hψ(n)进行卷积完成滤波并相加产生较高尺度的近似,本质上创建了 f ( n ) f(n) f(n)的较好近似
一个两级或二尺度FWT反变换综合滤波器组
下面是两个示例过程:
小波变换
反变换

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值