计算机视觉中的数学方法——1.4 变换群与不变量

本文深入探讨了计算机视觉领域中的数学方法,包括等距变换、相似变换、仿射变换和射影变换的数学原理及其不变量。通过理解这些变换群,读者将能更好地掌握视觉特征的提取与分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.4 变换群与不变量

这一章节讲的如果感觉不够细可以看一下MVG对应章节。
在这里插入图片描述

1.4.1 等距变换群

等距变换群

在这里插入图片描述
在这里插入图片描述

欧氏变换群

旋转和平移的复合,好像和等距一样。
旋转矩阵:RTR=RRT=I的正交矩阵。
在这里插入图片描述

欧氏不变量

等距变换群的不变量主要有:两点的距离、两线的夹角、图形的面积等。由于欧氏群是等距变换群的子群,因此等距变换群的不变量也是欧氏不变量。下面给出一个在计算机视觉中经常使用的欧氏不变性质:
在这里插入图片描述

1.4.2 相似变换群

相似变换

在这里插入图片描述

相似不变量

相似变换群的不变量有:两直线的夹角,长度的比值,面积的比值。这些性质是非常容易验证的。下面的命题是非常重要的,因为它在计算机视觉中扮演着非常重要的角色。
在这里插入图片描述

1.4.3 仿射变换群

仿射变换

仿射变换定义为
在这里插入图片描述

仿射变换的分解

对SVD及QR分解不了解也么有关系,先记住这里的结论,SVD、QR分解本身并不难。
SVD分解:
在这里插入图片描述
det(V)=1,D正数对角阵,det(VDVT)>0,也为保向

QR分解:
在这里插入图片描述
推移变换:y不变,x=(1+系数)x

仿射不变量

在这里插入图片描述
在这里插入图片描述

二次曲线的仿射分类

在这里插入图片描述

1.4.4 射影变换群

在这里插入图片描述
在这里插入图片描述

射影不变量

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值