锥Cones
如果对于任意
x
∈
C
x\in C
x∈C和
θ
≥
0
\theta \geq 0
θ≥0,都有
θ
x
∈
C
\theta x \in C
θx∈C,我们称集合C是锥cones,或者非负齐次(nonnegative homogeneous )的。如果集合C是锥,并且是凸的,则称C为凸锥(convex cone),即对任意
x
1
,
x
2
∈
C
x_1,x_2 \in C
x1,x2∈C和
θ
1
,
θ
2
≥
0
\theta_1, \theta_2\geq 0
θ1,θ2≥0,都有
θ
1
x
1
+
θ
2
x
2
∈
C
\theta_1x_1+\theta_2x_2\in C
θ1x1+θ2x2∈C
凸锥与凸集和仿射集合的定义不同的是:
- 仿射集合要求 θ 1 + ⋯ + θ k = 1 \theta_1+\cdots+\theta_k=1 θ1+⋯+θk=1
- 凸集要求 θ 1 + ⋯ + θ k = 1 , θ i ≥ 0 , i = 1 , ⋯ , k . \theta_1+\cdots+\theta_k=1, \theta_i\geq0,i=1,\cdots,k. θ1+⋯+θk=1,θi≥0,i=1,⋯,k.
- 凸锥要求 θ i ≥ 0 , i = 1 , ⋯ , k . \theta_i\geq 0,i=1,\cdots,k. θi≥0,i=1,⋯,k.
集合C的锥包(conic hull of a set C)是C中所有锥组合(conic conbinations)的集合,即
{
θ
1
x
1
+
⋯
+
θ
k
x
k
∣
x
i
∈
C
,
θ
i
≥
0
,
i
=
1
,
⋯
,
k
}
\{\theta_1x_1+\cdots+\theta_kx_k| x_i\in C,\theta_i\geq 0,i=1,\cdots,k\}
{θ1x1+⋯+θkxk∣xi∈C,θi≥0,i=1,⋯,k}