锥、凸锥、锥包

锥Cones

如果对于任意 x ∈ C x\in C xC θ ≥ 0 \theta \geq 0 θ0,都有 θ x ∈ C \theta x \in C θxC,我们称集合C是锥cones,或者非负齐次(nonnegative homogeneous )的。如果集合C是锥,并且是凸的,则称C为凸锥(convex cone),即对任意 x 1 , x 2 ∈ C x_1,x_2 \in C x1,x2C θ 1 , θ 2 ≥ 0 \theta_1, \theta_2\geq 0 θ1,θ20,都有
θ 1 x 1 + θ 2 x 2 ∈ C \theta_1x_1+\theta_2x_2\in C θ1x1+θ2x2C
在这里插入图片描述凸锥与凸集和仿射集合的定义不同的是:

  • 仿射集合要求 θ 1 + ⋯ + θ k = 1 \theta_1+\cdots+\theta_k=1 θ1++θk=1
  • 凸集要求 θ 1 + ⋯ + θ k = 1 , θ i ≥ 0 , i = 1 , ⋯   , k . \theta_1+\cdots+\theta_k=1, \theta_i\geq0,i=1,\cdots,k. θ1++θk=1,θi0,i=1,,k.
  • 凸锥要求 θ i ≥ 0 , i = 1 , ⋯   , k . \theta_i\geq 0,i=1,\cdots,k. θi0,i=1,,k.

集合C的锥包(conic hull of a set C)是C中所有锥组合(conic conbinations)的集合,即
{ θ 1 x 1 + ⋯ + θ k x k ∣ x i ∈ C , θ i ≥ 0 , i = 1 , ⋯   , k } \{\theta_1x_1+\cdots+\theta_kx_k| x_i\in C,\theta_i\geq 0,i=1,\cdots,k\} {θ1x1++θkxkxiC,θi0,i=1,,k}
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值