凸优化学习[二]|仿射集、凸集、凸锥

直线(Lines)和线段(line segments)

  我们令 x 1 x_1 x1 x 2 x_2 x2 R n \mathbf{R}^n Rn空间中的两个不重合的点 x 1 ≠ x 2 x_1 \neq x_2 x1=x2,那么直线和线段都可以用下式统一地表示 y = θ x 1 + ( 1 − θ ) x 2 y = \theta x_1 + (1-\theta)x_2 y=θx1+(1θ)x2特别地
直 线 : θ ∈ [ 0 , 1 ] 直线 : \theta \in [0,1] 线:θ[0,1] 线 段 : θ ∈ R 线段 :\theta \in \mathbf{R} 线θR
  为了说明这个式子隐含的意义,我们对其稍作变形 y = x 2 + θ ( x 1 − x 2 ) y = x_2 + \theta (x_1 - x_2) y=x2+θ(x1x2)  现在我们考虑考虑一个二维( R 2 \mathbf{R}^2 R2)的情形,这里的 x 1 x_1 x1 x 2 x_2 x2我们看作在 R 2 \mathbf{R}^2 R2空间上的向量。
  这个意义是显然的, y y y走过了 θ \theta θ倍的 x 1 − x 2 x_1 - x_2 x1x2长度,当 θ = 1 \theta = 1 θ=1时, y y y恰好称为一条连接 x 1      x 2 x_1\;\; x_2 x1x2的线段,而当 θ \theta θ取遍 R \mathbf{R} R的时候, y y y将向两端无限延展成为一条直线。

仿射集(Affine sets)

  仿射集合的定义是简单而抽象的:
  若过集合 C ⊆ R n \mathbf{C}\subseteq \mathbf{R}^n CRn中任意两个点的直线仍在集合 C \mathbf{C} C中,称 C \mathbf{C} C为仿射集。
  利用直线的知识,我们可以用数学的语言描述这个集合 C \mathbf{C} C
∀ x 1 , x 2 ∈ C , θ ∈ R , θ x 1 + ( 1 − θ ) x 2 ∈ R \forall x_1,x_2 \in \mathbf{C},\theta \in \mathbf{R},\theta x_1+(1-\theta )x_2 \in \mathbf{R} x1,x2C,θR,θx1+(1θ)x2R

仿射组合(Affine combination)

  仿射集合的概念可以扩充到 k k k个点的情况
若 : θ 1 + θ 2 + ⋯ θ k = 1 , x 1 , . . . , x k ∈ C 若:\theta _1 + \theta_2+\cdots \theta_k=1,x_1,...,x_k\in \mathbf{C} θ1+θ2+θk=1,x1,...,xkC 有 : θ 1 x 1 + θ 2 x 2 + ⋯ θ k x k ∈ C 有:\theta _1 x_1 + \theta_2x_2+\cdots \theta_kx_k\in \mathbf{C} θ1x1+θ2x2+θkxkC
则称 θ 1 x 1 + θ 2 x 2 + ⋯ θ k x k \theta _1 x_1 + \theta_2x_2+\cdots \theta_kx_k θ1x1+θ2x2+θkxk一个 x 1 , . . . , x k x_1,...,x_k x1,...,xk的仿射组合(an affine combination of the points x 1 , . . . , x k x_1,...,x_k x1,...,xk)
  以下对 n = 3 n=3 n=3的情况做简要证明:
  设 θ 1 + θ 2 + θ 3 \theta _1+\theta _2+\theta _3 θ1+θ2+θ3 x 1 , x 2 , x 3 ∈ C x_1,x_2,x_3\in \mathbf{C} x1,x2,x3C,
θ 1 θ 1 + θ 2 x 1 + θ 2 θ 1 + θ 2 x 2 ∈ C \frac{\theta _1}{\theta _1+\theta _2}x_1 + \frac{\theta _2}{\theta _1+\theta _2}x_2 \in \mathbf{C} θ1+θ2θ1x1+θ1+θ2θ2x2C
  那么加入第三个点
( θ 1 + θ 2 ) ( θ 1 θ 1 + θ 2 x 1 + θ 2 θ 1 + θ 2 x 2 ) + ( 1 − θ 1 − θ 2 ) x 3 ∈ C (\theta _1+\theta _2)(\frac{\theta _1}{\theta _1+\theta _2}x_1 + \frac{\theta _2}{\theta _1+\theta _2}x_2)+(1-\theta _1-\theta _2)x_3 \in \mathbf{C} (θ1+θ2)(θ1+θ2θ1x1+θ1+θ2θ2x2)+(1θ1θ2)x3C

证明提示:将 θ 1 θ 1 + θ 2 x 1 + θ 2 θ 1 + θ 2 \frac{\theta _1}{\theta _1+\theta _2}x_1 + \frac{\theta _2}{\theta _1+\theta _2} θ1+θ2θ1x1+θ1+θ2θ2看作 C \mathbf{C} C中的一个点。

仿射包(Affine hull)

  仿射包是一个包含集合(不一定是仿射集 C \mathbf{C} C的最小仿射集,记为 a f f C \mathbf{aff C} affC,即 a f f C = { θ 1 x 1 + θ 2 x 2 + ⋯ θ k x k ∣ θ 1 + θ 2 + ⋯ θ k = 1 , x 1 , . . . , x k ∈ C } \mathbf{aff C} = \{ \theta _1 x_1 + \theta_2x_2+\cdots \theta_kx_k|\theta _1 + \theta_2+\cdots \theta_k=1,x_1,...,x_k\in \mathbf{C} \} affC={θ1x1+θ2x2+θkxkθ1+θ2+θk=1,x1,...,xkC}显然有以下结论成立:
  若 S \mathbf{S} S是满足 C ⊆ S \mathbf{C}\subseteq\mathbf{S} CS的一个仿射集,则 a f f C ⊆ S \mathbf{aff C}\subseteq \mathbf{S} affCS
  仿射包也有一些浅显易懂的例子,例如,空间任意两个不重合的点其仿射包为经过这两点的直线,三个不重合的点为包含这三个点的平面

相关子空间(Subspace)

  现思考如下问题
  若 α , β ∈ R , x 1 , x 2 ∈ C \alpha,\beta \in \mathbf{R},x_1,x_2\in \mathbf{C} α,βR,x1,x2C,其中 C \mathbf{C} C是一个 R n \mathbf{R}^n Rn上的仿射集,那么 α x 1 + β x 2 \alpha x_1 + \beta x_2 αx1+βx2是否仍属于 C \mathbf{C} C?
  这个是不一定的。对比仿射集的定义我们知道当且仅当 α + β = 1 \alpha + \beta =1 α+β=1时才属于仿射集 C \mathbf{C} C
  这里需要引入一个相关子空间的概念。
  如果集合 C \mathbf{C} C是一个仿射集,且 x 0 ∈ C x_0\in \mathbf{C} x0C,那么 V = C − x 0 \mathbf{V}=\mathbf{C}-x_0 V=Cx0  这里称 V 为 C \mathbf{V}为\mathbf{C} VC的相关子空间。
  我们以 R 2 \mathbf{R}^2 R2为例阐述 V \mathbf{V} V的直观含义
在这里插入图片描述

  很显然这就相当于坐标轴移动至 x 0 x_0 x0处,或者说以 x 0 x_0 x0为原点构造了一个新的空间
假如选取的 x 0 ∉ C x_0\notin \mathbf{C} x0/C,则 V = C − x 0 \mathbf{V}=\mathbf{C}-x_0 V=Cx0,因为对于一个空间而言须满足以下性质:

  1.加法封闭 x 1 , x 2 ∈ V ⇒ x 1 + x 2 ∈ V x_1,x_2\in\mathbf{V}\Rightarrow x_1+x_2\in\mathbf{V} x1,x2Vx1+x2V

  2.数乘封闭 x 1 ∈ V , λ ∈ R ⇒ λ x 1 ∈ V x_1 \in\mathbf{V},\lambda \in \mathbf{R}\Rightarrow \lambda x_1 \in \mathbf{V} x1V,λRλx1V
  需要注意的是:任何一个空间都必须包含一个“原点”(这是一个很哲学的定义,就像人们通常认为的宇宙起源于一次爆炸),没有原点的集合构不成一个空间,例如二维平面一条不经过原点的直线,这条直线上点构成的集合不是一个空间,因为他不满足加法封闭

线性方程组的解集(Solution set of linear equations)

  现考虑线性方程组的解集,能试证明线性方程组的解集 { x ∣ A x = b } \{x|Ax=b\} {xAx=b}是一个仿射集合。
A x = b Ax = b Ax=b
  其中 A ∈ R m × n , b ∈ R m A\in \mathbf{R}^{m\times n},b\in \mathbf{R}^m ARm×n,bRm
  现取 x 1 ,   x 2 ∈ x x_1,\,x_2\in x x1,x2x,显然 A x 1 = b , A x 2 = b Ax_1=b,Ax_2 = b Ax1=b,Ax2=b,令 θ ∈ R \theta \in \mathbf{R} θR, x ′ = θ x 1 + ( 1 − θ ) x 2 x'=\theta x_1+(1-\theta)x_2 x=θx1+(1θ)x2,有
A x ′ = A [ θ x 1 + ( 1 − θ ) x 2 ] = θ A x 1 + ( 1 − θ ) A x 2 = θ b + ( 1 − θ ) b = b Ax' = A[\theta x_1+(1-\theta)x_2]=\theta Ax_1+(1-\theta)Ax_2=\theta b+(1-\theta)b=b Ax=A[θx1+(1θ)x2]=θAx1+(1θ)Ax2=θb+(1θ)b=b因此 x ′ ∈ x x'\in x xx,集合 { x ∣ A x = b } \{x|Ax=b\} {xAx=b}是一个仿射集

凸集(Convex sets)

  假如我们对仿射集的要求加以放宽注意是放宽),若过集合 C ⊆ R n \mathbf{C}\subseteq \mathbf{R}^n CRn中任意两个点的线段仍在集合 C \mathbf{C} C中,称 C \mathbf{C} C为凸集。
  利用线段的知识,我们可以用数学的语言描述这个集合 C \mathbf{C} C
∀ x 1 , x 2 ∈ C , θ ∈ [ 0 , 1 ] , θ x 1 + ( 1 − θ ) x 2 ∈ R \forall x_1,x_2 \in \mathbf{C},\theta \in [0,1],\theta x_1+(1-\theta )x_2 \in \mathbf{R} x1,x2C,θ[0,1],θx1+(1θ)x2R
  注意 θ ∈ [ 0 , 1 ] \theta \in [0,1] θ[0,1]
  我们可以用一些形象的例子来说明凸集的性质
在这里插入图片描述
  对于第一幅图构成的集合,我们在阴影区域任意选取两个点,过这两个点的线段仍然在这个区域中,因此这是一个凸集。
  对于第二幅图构成的集合,选取如图两个特殊的点,过这两个点的线段将会有一部分超出这个区域,因此不是一个凸集。
  对于第三幅图构成的集合,由于边界不连续,因此在边界上取两个点绘制的线段将可能经过这个不连续区域,因此也不是一个凸集。

凸组合(Convex combination)

  凸集的概念同样可以扩充到 k k k个点的情况
若 : θ 1 + θ 2 + ⋯ θ k = 1 , θ 0 , ⋯ θ k ⩾ 0 , x 1 , . . . , x k ∈ C 若:\theta _1 + \theta_2+\cdots \theta_k=1,\theta _0,\cdots \theta _k \geqslant 0,x_1,...,x_k\in \mathbf{C} θ1+θ2+θk=1,θ0,θk0,x1,...,xkC 有 : θ 1 x 1 + θ 2 x 2 + ⋯ θ k x k ∈ C 有:\theta _1 x_1 + \theta_2x_2+\cdots \theta_kx_k\in \mathbf{C} θ1x1+θ2x2+θkxkC
  则称 θ 1 x 1 + θ 2 x 2 + ⋯ θ k x k \theta _1 x_1 + \theta_2x_2+\cdots \theta_kx_k θ1x1+θ2x2+θkxk 是一个 x 1 , . . . , x k x_1,...,x_k x1,...,xk的凸组合。
  提示:凸组合与仿射组合的区别就在于凸组合放宽了限制条件,只需 θ k = 1 , θ 0 , ⋯ θ k ⩾ 0 \theta_k=1,\theta _0,\cdots \theta _k \geqslant 0 θk=1,θ0,θk0,这等价于 θ k = 1 , θ 0 , ⋯ θ k ∈ [ 0 , 1 ] \theta_k=1,\theta _0,\cdots \theta _k \in [0,1] θk=1,θ0,θk[0,1]
  直观意义上,凸组合就是对 x 1 , . . . , x k x_1,...,x_k x1,...,xk k k k个点的加权平均。

凸包(Convex hull)

  凸包的概念可以从仿射包类比过来:
  凸包是一个包含集合(不一定是凸集 C \mathbf{C} C的最小凸集,记为 c o n v C \mathbf{conv C} convC,即 c o n v C = { θ 1 x 1 + θ 2 x 2 + ⋯ θ k x k ∣ θ 1 + θ 2 + ⋯ θ k = 1 , θ 0 , ⋯ θ k ⩾ 0 , x 1 , . . . , x k ∈ C } \mathbf{conv C} = \{ \theta _1 x_1 + \theta_2x_2+\cdots \theta_kx_k|\theta _1 + \theta_2+\cdots \theta_k=1,\theta _0,\cdots \theta _k \geqslant 0,x_1,...,x_k\in \mathbf{C} \} convC={θ1x1+θ2x2+θkxkθ1+θ2+θk=1,θ0,θk0,x1,...,xkC}显然有以下结论成立
  若 S \mathbf{S} S是满足 C ⊆ S \mathbf{C}\subseteq\mathbf{S} CS的一个凸集,则 c o n v C ⊆ S \mathbf{conv C}\subseteq \mathbf{S} convCS
  以下是凸包的的形象例子
在这里插入图片描述

锥、凸锥、锥组合、锥包(Cones, Cone sets, Cone combination, Cone Hull)

  若对于任意 x ∈ C , θ ⩾ 0 x\in\mathbf{C},\theta \geqslant 0 xC,θ0,都有 θ x ∈ C \theta x\in \mathbf{C} θxC,则称 C \mathbf{C} C,为一个锥。显然锥至少包含原点
  对于任意 x 1 , x 2 ∈ C x_1,x_2\in \mathbf{C} x1,x2C θ 1 , θ 2 ⩾ 0 \theta_1,\theta_2 \geqslant 0 θ1,θ20,都有 θ 1 x 1 + θ 2 x 2 ∈ C \theta_1x_1+\theta_2x_2\in C θ1x1+θ2x2C的集合 C \mathbf{C} C称为凸锥。
  也就是说,在凸锥 C \mathbf{C} C中任取两个点 x 1 , x 2 x_1,x_2 x1,x2若有一点 x 3 x_3 x3能与这两个点和原点构成一个平行四边形 x 3 x_3 x3必然属于 C \mathbf{C} C,下图是一个凸锥的例子。

在这里插入图片描述
  有凸锥同样也有锥组合,对于凸锥 C \mathbf{C} C
若 : θ 0 , ⋯ θ k ⩾ 0 , x 1 , . . . , x k ∈ C 若:\theta _0,\cdots \theta _k \geqslant 0,x_1,...,x_k\in \mathbf{C} θ0,θk0,x1,...,xkC 有 : θ 1 x 1 + θ 2 x 2 + ⋯ θ k x k ∈ C 有:\theta _1 x_1 + \theta_2x_2+\cdots \theta_kx_k\in \mathbf{C} θ1x1+θ2x2+θkxkC
  注意我们仅限制 θ \theta θ非负,因此锥组合又叫做非负线性组合。
  同样地也有锥包,定义如下
{ θ 1 x 1 + θ 2 x 2 + ⋯ θ k x k ∣ θ 0 , ⋯ θ k ⩾ 0 , x 1 , . . . , x k ∈ C } \{\theta _1 x_1 + \theta_2x_2+\cdots \theta_kx_k|\theta _0,\cdots \theta _k \geqslant 0,x_1,...,x_k\in \mathbf{C}\} {θ1x1+θ2x2+θkxkθ0,θk0,x1,...,xkC}
  他是包含任意集合 C \mathbf{C} C的一个最小凸锥。下图是锥包的形象例子。
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大困困瓜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值