AAAI‘2024时间序列论文汇总!预测、分类、异常检测和因果发现的最新进展

本文汇总了AAAI'2024会议中关于时间序列分析的最新研究,涵盖了预测、分类、异常检测和因果发现等多个方向。亮点包括MSGNet的多尺度间序列相关性学习、DAN的长期时间序列预测、TimesURL的自监督对比学习、GCC的多变量时间序列分类以及CUTS+的高维因果发现等。这些研究展示了在时间序列领域的创新与进步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在数据科学领域,时间序列分析一直是研究的热点和难点。随着大数据时代的到来,时间序列数据在各个领域的应用越来越广泛,如金融、气象、健康等。因此,对时间序列的研究具有重要的理论和实践意义。

今天就将AAAI'2024会议收录的时间序列论文进行了汇总,涵盖预测、分类、异常检测与因果发现多个方向,大家可以看一看该领域的研究进展和最新成果。

1、MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecasting

MSGNet:学习多变量时间序列预测中的多尺度间序列相关性

简述:本文提出了一种先进的深度学习模型MSGNet,利用频域分析和自适应图卷积捕捉不同时间尺度上的相互关系。该模型能提取显著周期模式,分解时间序列,并结合自注意力机制和自适应混合跳跃图卷积层学习不同相互关系。在多个真实数据集上实验证明其有效性,且能自动学习可解释的多尺度相互关系,具有强大泛化能力。

图片

2、Learning from Polar Representation: An Extreme-Adaptive Model for Long-Term Time Series Forecasting

从极化表示中学习:用于长期时间序列预测的极端自适应模型

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值