深度学习算法以及适用场景
算法的学习永无止境,学后忘前是大忌,学了就要多用多实践,那么多算法要不断的温习,并且总结算法可以解决什么样的问题,在有了一定的知识储备后可以优化算法甚至创造算法乃算法学习之最高境界。
本文是在本人学习深度学习的过程中的一些算法总结,以免自己白学,本文将一直处于更新状态,好了开始,加油!
线性回归
- 适用问题:预测
- 适用条件:结果(y值)与一个或多个变量存在线性关系,即y=k1x1+k2x2+…+b(k为权值,x为变量,b为误差),则可以用线性回归求得每个变量对应的权值与误差
- 条件检验:绘制x与y的二维散点图,观察
- 实现方法(详细):线性回归的详细实现
- 实现方法(框架):线性回归的简易实现
Softmax回归
- 适用问题:分类预测
- 使用条件:每一类都有鲜明特征,如图片分类,某一类图片在某一个或多个像素点的颜色较深,那么对这些像素点的权重值拉大,那么最终属于该类的图片最后的概率一定最大,便可以实现准确分类。
- 实现方法(详细):Softmax回归详细实现
- 实现方法(简易):Softmax回归简易实现