YOLOv8训练流程-原理解析[目标检测理论篇]

本文详细介绍了YOLOv8的训练流程,特别是Task Aligned Assigner策略和Loss计算,包括Loss_cls、Loss_box(使用CIoU Loss)和Loss_DFL(使用Cross_entropy Loss)。通过对Grid cell的理解,阐述了正负样本的选择和损失函数的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

          关于YOLOv8的主干网络在YOLOv8网络结构介绍-CSDN博客介绍了,为了更好地学习本章内容,建议先去看预测流程的原理分析YOLOv8原理解析[目标检测理论篇]-CSDN博客

1.前言

          YOLOv8训练流程这一块内容还是比较复杂的,所以先来谈一下训练流程的思路,一共就两步:第一步就是从网络预测的结果中找到正样本,并且确定正样本要预测的对象;第二步就是计算预测结果和标签之间的损失,分别计算预测框的损失以及预测类别的损失。

        如下图所示,假设一张图片中只有3个标签

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吃鱼不卡次

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值