Tensorflow学习五---全连接

本文介绍了Tensorflow中的全连接层,它在神经网络中起到整合前层特征并进行分类的作用。全连接层的每个节点都与上一层所有节点相连,激活函数常使用ReLU,最后的全连接层通常配以softmax层进行分类。文章还提到了全连接层的参数设置,如激活函数、权重初始化等。
摘要由CSDN通过智能技术生成

Tensorflow学习五—全连接

在这里插入图片描述

什么是全连接

今天开始我们以神经层的形式开始介绍,首先介绍全连接层。
那么什么是全连接?
全连接层就是对n-1层和n层而言,n-1层的任意一个节点,都和第n层所有节点有连接。即第n层的每个节点在进行计算的时候,激活函数的输入是n-1层所有节点的加权。换句话来说全连接层就是每一个结点都与上一层的所有结点相连,用来把前边提取到的特征综合起来。
在CNN中全连接层的作用?
在CNN(卷积神经网络)中可以整合卷积层或者池化层中具有类别区分性的局部信息.为了提升 CNN 网络性能,全连接层每个神经元的激励函数一般采用 ReLU 函数。最后一层全连接层的输出值被传递给一个输出,可以采用 softmax 逻辑回归(softmax regression)进行 分 类,该层也可 称为 softmax 层(softmax layer)。

tf.layers.dense(inputs,
				units,
				activation
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值