Tensorflow学习五—全连接
什么是全连接
今天开始我们以神经层的形式开始介绍,首先介绍全连接层。
那么什么是全连接?
全连接层就是对n-1层和n层而言,n-1层的任意一个节点,都和第n层所有节点有连接。即第n层的每个节点在进行计算的时候,激活函数的输入是n-1层所有节点的加权。换句话来说全连接层就是每一个结点都与上一层的所有结点相连,用来把前边提取到的特征综合起来。
在CNN中全连接层的作用?
在CNN(卷积神经网络)中可以整合卷积层或者池化层中具有类别区分性的局部信息.为了提升 CNN 网络性能,全连接层每个神经元的激励函数一般采用 ReLU 函数。最后一层全连接层的输出值被传递给一个输出,可以采用 softmax 逻辑回归(softmax regression)进行 分 类,该层也可 称为 softmax 层(softmax layer)。
tf.layers.dense(inputs,
units,
activation