23、机器学习数学基础:多元函数微积分

y = f ( x 1 , x 2 , . . . , x n ) , ( x 1 , x 2 , . . . , x n ) ∈ R n , x i ∈ R y=f(x_1,x_2,...,x_n),(x_1,x_2,...,x_n) \in R^n,x_i\in R y=f(x1,x2,...,xn)(x1,x2,...,xn)RnxiR

( x 1 , x 2 , . . . , x n ) (x_1,x_2,...,x_n) (x1,x2,...,xn)与点 ( z 1 , z 2 , . . . , z n ) (z_1,z_2,...,z_n) (z1,z2,...,zn)之间的距离为

d = ( ( x 1 − z 1 ) 2 + ( x 2 − z 2 ) 2 + . . . + ( x n − z n ) 2 d=\sqrt{((x_1-z_1)^2+(x_2-z_2)^2+...+(x_n-z_n)^2} d=((x1z1)2+(x2z2)2+...+(xnzn)2

1、当函数通过不同方向趋近不同的极限时,该点的极限不存在

函数 f ( x , y ) = x 2 y x 4 + y 2 f(x,y)=\frac{x^2y}{x^4+y^2} f(x,y)=x4+y2x2y,当沿着线性函数y=kx趋近于(0,0)这一点时,有 f ( x , y ) = x 3 x 4 + k 2 x 2 f(x,y)=\frac{x^3}{x^4+k^2x^2} f(x,y)=x4+k2x2x3,当x趋近于0时,f(x,y)趋近于0。

y = k x 2 , f ( x , y ) = x 4 x 4 + k 2 x 4 = k k 2 + 1 y=kx^2,f(x,y)=\frac{x^4}{x^4+k^2x^4}=\frac{k}{k^2+1} y=kx2f(x,y)=x4+k2x4x4=k2+1k不趋近于0。因为从不同方向趋近(0,0)时,有不同的值,所以f(x,y)在(0,0)极限不存在,也不连续。多维函数的极限是从整个范围来看,而不单单从某个方向。
y = f ( x 1 , x 2 , . . . , x n ) y=f(x_1,x_2,...,x_n) y=f(x1,x2,...,xn)极值,任意方向的变化都是变小,该点为极大值。

2、偏导数

对于 x i x_i xi求导, x 1 , . . . , x i − 1 , x i + 1 , . . . x n x_1,...,x_{i-1},x_{i+1},...x_n x1,...,xi1,xi+1,...xn固定, lim ⁡ x i → x i 0 f ( x 1 0 , x 2 0 , . . . , x i − 1 0 , x i , x i + 1 0 , x n 0 ) − f ( x 1 0 , x 2 0 , . . . , x i − 1 0 , x i 0 , x i + 1 0 , x n 0 ) x i − x i 0 = ∂ f ( x 0 ⃗ ) ∂ x i \lim\limits_{x_i \to x_i^0}\frac{f(x_1^0,x_2^0,...,x_{i-1}^0,x_i,x_{i+1}^0,x_n^0)-f(x_1^0,x_2^0,...,x_{i-1}^0,x_i^0,x_{i+1}^0,x_n^0)}{x_i-x_i^0}=\frac{ \partial f(\vec{x_0})}{ \partial x_i} xixi0limxixi0f(x10,x20,...,xi10,xi,xi+10,xn0)f(x10,x20,...,xi10,xi0,xi+10,xn0)=xif(x0 )

函数在x、y、z上的偏导存在,函数不一定连续,例如: f ( x , y , z ) = { 0 , x y z = 0 1 , x y z ≠ 0 f(x,y,z)=\begin{cases} 0,xyz=0\\ 1,xyz\neq0 \end{cases} f(x,y,z)={0,xyz=01,xyz=0函数在(1,1,1)上沿方向轴(x,y,z)的偏导为0,在(0,0,0)上沿方向轴的偏导为0上沿方向轴(x,y,z)的偏导为0,(0,0,0)不连续,因为除了(0,0,0)和轴向、平面之外,其他地方都是1,不是对 ∀ ϵ > 0 , ∃ δ > 0 \forall\epsilon>0,\exist \delta>0 ϵ>0,δ>0,当 ∣ x ⃗ − 0 ⃗ ∣ < δ |\vec{x}-\vec{0}|< \delta x 0 <δ ∣ f ( x ⃗ ) − f ( 0 ⃗ ) ∣ < ϵ , ∣ f ( x ⃗ ) − f ( 0 ⃗ ) ∣ = 1 |f(\vec{x})-f(\vec{0})|< \epsilon,|f(\vec{x})-f(\vec{0})|=1 f(x )f(0 )<ϵ,f(x )f(0 )=1

3、方向导数

v ⃗ = ( x , y , z ) \vec{v}=(x,y,z) v =(x,y,z) 1 = x 2 + y 2 + z 2 , θ x 1=\sqrt{x^2+y^2+z^2},\theta_x 1=x2+y2+z2 ,θx v ⃗ \vec{v} v 与x轴的夹角, v ⃗ = ( c o s ( θ x ) , c o s ( θ y ) , c o s ( θ z ) ) \vec{v}=(cos(\theta_x),cos(\theta_y),cos(\theta_z)) v =(cos(θx),cos(θy),cos(θz)) lim ⁡ t → 0 f ( t v ⃗ + x 0 ⃗ ) − f ( x 0 ⃗ ) t = \lim\limits_{t \to 0}\frac{f(t\vec{v}+\vec{x_0})-f(\vec{x_0})}{t}= t0limtf(tv +x0 )f(x0 )=沿 v ⃗ \vec{v} v 的方向导数,方向导数存在,偏导数也不一定存在,偏导数是沿x轴的方向,往x轴正向移动偏导数的变化与往负项移动偏导数的变化相反,正向和反向的方向导数是相反的。 f ( x , y ) = x 2 + y 2 f(x,y)=\sqrt{x^2+y^2} f(x,y)=x2+y2 沿任意方向走,方向导数是1,但是沿x轴正向走与沿负项走的都是1,所以在0点f(x,y)不存在x轴、y轴上的偏导数。

4、微分、梯度

Δ f ( x 0 ⃗ ) = f ( x 0 ⃗ + Δ x ⃗ ) − f ( x 0 ⃗ ) = ∑ i = 1 n A i Δ x i + o ( ∣ Δ x ⃗ ∣ ) \Delta f(\vec{x_0})=f(\vec{x_0}+\Delta\vec{x})-f(\vec{x_0})=\sum_{i=1}^nA_i\Delta x_i+o(|\Delta \vec{x}|) Δf(x0 )=f(x0 +Δx )f(x0 )=i=1nAiΔxi+o(∣Δx )存在的话,证明f(x)在 x 0 ⃗ \vec{x_0} x0 的微分存在,该式为 x 0 ⃗ \vec{x_0} x0 的全微分,如果在该点可微分,则在该点是连续的且偏导存在且为 A i A_i Ai,偏导存在且在每个方向上连续可推出函数可微。偏导是单个方向的变化,微分是每个方向变化的加和。

v ⃗ = ( c o s θ 1 , c o s θ 2 , . . . , c o s θ n ) \vec{v}=(cos\theta_1,cos\theta_2,...,cos\theta_n) v =(cosθ1,cosθ2,...,cosθn)
如果函数可微,则方向函数 ∂ f ( x 0 ⃗ ) ∂ v ⃗ = lim ⁡ t → 0 f ( t v ⃗ + x 0 ⃗ ) − f ( x 0 ⃗ ) t = lim ⁡ t → 0 ∑ ∂ f ( x 0 ) ∂ x i t c o s θ i + o ( ∣ t ∣ ) + f ( x 0 ⃗ ) − f ( x 0 ⃗ ) t = ∑ ∂ f ( x 0 ) ∂ x i c o s θ i = ( ∂ f ( x 0 ) ∂ x 1 , ∂ f ( x 0 ) ∂ x 2 , . . . , ∂ f ( x 0 ) ∂ x n ) ( c o s θ 1 , c o s θ 2 , . . . , c o s θ n ) , ( ∂ f ( x 0 ) ∂ x 1 , ∂ f ( x 0 ) ∂ x 2 , . . . , ∂ f ( x 0 ) ∂ x n ) \frac{\partial f(\vec{x_0})}{ \partial \vec{v}}=\lim\limits_{t \to 0}\frac{f(t\vec{v}+\vec{x_0})-f(\vec{x_0})}{t}=\lim\limits_{t \to 0}\frac{\sum\frac{ \partial f(x_0)}{\partial x_i}tcos\theta_i+o(|t|)+f(\vec{x_0})-f(\vec{x_0})}{t}\\=\sum\frac{ \partial f(x_0)}{\partial x_i}cos\theta_i=(\frac{ \partial f(x_0)}{\partial x_1},\frac{ \partial f(x_0)}{\partial x_2},...,\frac{ \partial f(x_0)}{\partial x_n})(cos\theta_1,cos\theta_2,...,cos\theta_n),(\frac{ \partial f(x_0)}{\partial x_1},\frac{ \partial f(x_0)}{\partial x_2},...,\frac{ \partial f(x_0)}{\partial x_n}) v f(x0 )=t0limtf(tv +x0 )f(x0 )=t0limtxif(x0)tcosθi+o(t)+f(x0 )f(x0 )=xif(x0)cosθi=(x1f(x0),x2f(x0),...,xnf(x0))(cosθ1,cosθ2,...,cosθn)(x1f(x0),x2f(x0),...,xnf(x0))

为函数的梯度,决定了所有方向上方向导数的取值。向量函数 ( f 1 , f 2 , . . . , f n ) (f_1,f_2,...,f_n) (f1,f2,...,fn)对每个分量 x i x_i xi的偏导形成了雅克比矩阵,多元函数的梯度对应一元函数的导数。

4、链式法则

一元函数链式法则:

y = f ( u ( x ) ) = d y d u d u d x , y ′ = f ( u ( x 0 ) ) = f ′ ( u ( x 0 ) ) u ′ ( x 0 ) , Δ y = Δ f = f ′ Δ u = f ′ u ′ Δ x , Δ y Δ x = f ′ ( u ( x 0 ) ) u ′ y=f(u(x))= \frac{dy}{du} \frac{du}{dx},y'=f(u(x_0))=f'(u(x_0))u'(x_0),\Delta y=\Delta f=f'\Delta u=f'u'\Delta x ,\frac{\Delta y}{\Delta x}=f'(u(x_0))u' y=f(u(x))=dudydxduy=f(u(x0))=f(u(x0))u(x0)Δy=Δf=fΔu=fuΔxΔxΔy=f(u(x0))u

多元函数链式法则: f ( u 1 ( x ⃗ ) , u 2 ( x ⃗ ) , . . . , u n ( x ⃗ ) ) f(u_1(\vec{x}),u_2(\vec{x}),...,u_n(\vec{x})) f(u1(x ),u2(x ),...,un(x )) u 1 ( x 1 , x 2 , . . . , x n ) u_1(x_1,x_2,...,x_n) u1(x1,x2,...,xn)

Δ u 1 = ∂ u 1 ∂ x 1 Δ x 1 + ∂ u 1 ∂ x 2 Δ x 2 . . . \Delta u_1=\frac{\partial u_1}{\partial x_1}\Delta x_1+\frac{\partial u_1}{\partial x_2}\Delta x_2... Δu1=x1u1Δx1+x2u1Δx2...

Δ y = ∂ f ∂ u 1 Δ u 1 + ∂ f ∂ u 2 Δ u 2 + . . . + ∂ f ∂ u n Δ u n = ∂ f ∂ u 1 ∂ u 1 ∂ x 1 Δ x 1 + ∂ f ∂ u 2 ∂ u 2 ∂ x 1 Δ x 1 . . . + ∂ f ∂ u n ∂ u n ∂ x 1 Δ x 1 + ( ) x 2 . . . \Delta y=\frac{\partial f}{\partial u_1}\Delta u_1+\frac{\partial f}{\partial u_2}\Delta u_2+...+\frac{\partial f}{\partial u_n}\Delta u_n= \frac{\partial f}{\partial u_1}\frac{\partial u_1}{\partial x_1}\Delta x_1+\frac{\partial f}{\partial u_2}\frac{\partial u_2}{\partial x_1}\Delta x_1...+\frac{\partial f}{\partial u_n}\frac{\partial u_n}{\partial x_1}\Delta x_1+()x_2... Δy=u1fΔu1+u2fΔu2+...+unfΔun=u1fx1u1Δx1+u2fx1u2Δx1...+unfx1unΔx1+()x2...

Δ y = A 1 Δ x 1 + A 2 Δ x 2 + . . . + A n Δ x n \Delta y=A_1\Delta x_1+A_2\Delta x_2+...+A_n\Delta x_n Δy=A1Δx1+A2Δx2+...+AnΔxn

∂ y ∂ x 1 = ∂ f ∂ u 1 ∂ u 1 ∂ x 1 Δ x 1 + ∂ f ∂ u 2 ∂ u 2 ∂ x 1 Δ x 1 . . . + ∂ f ∂ u n ∂ u n ∂ x 1 Δ x 1 \frac{\partial y}{\partial x_1}=\frac{\partial f}{\partial u_1}\frac{\partial u_1}{\partial x_1}\Delta x_1+\frac{\partial f}{\partial u_2}\frac{\partial u_2}{\partial x_1}\Delta x_1...+\frac{\partial f}{\partial u_n}\frac{\partial u_n}{\partial x_1}\Delta x_1 x1y=u1fx1u1Δx1+u2fx1u2Δx1...+unfx1unΔx1

4、 多元函数的极值

多元函数的极值:极值点的梯度为0向量

f ( x ⃗ ) = f ( x 0 ⃗ ) + ( x ⃗ − x 0 ⃗ ) g r a d f ( x 0 ⃗ ) + 0.5 ( x ⃗ − x 0 ⃗ ) H ( x ⃗ − x 0 ⃗ ) T f(\vec{x})=f(\vec{x_0})+(\vec{x}-\vec{x_0})grad f(\vec{x_0})+0.5(\vec{x}-\vec{x_0})H(\vec{x}-\vec{x_0})^T f(x )=f(x0 )+(x x0 )gradf(x0 )+0.5(x x0 )H(x x0 )T

H = ( ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ) H=\left( \begin{array}{ccc} \frac{\partial^2 f }{\partial x_1^2 } & \frac{\partial^2 f }{\partial x_1\partial x_2 }\\ \frac{\partial^2 f }{\partial x_2\partial x_1 } & \frac{\partial^2 f }{\partial x_2^2 } \end{array} \right) H=(x122fx2x12fx1x22fx222f)
( x ⃗ − x 0 ⃗ ) H ( x ⃗ − x 0 ⃗ ) T = ( x 1 − x 1 0 , x 2 − x 2 0 ) ( ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ) ( x 1 − x 1 0 x 2 − x 2 0 ) = 0.5 [ ( x 1 − x 1 0 ) 2 ∂ 2 f ∂ x 1 2 + 2 ( x 1 − x 1 0 ) ( x 2 − x 2 0 ) ∂ 2 f ∂ x 2 ∂ x 1 + ( x 2 − x 2 0 ) 2 ∂ 2 f ∂ x 2 2 ] = 0.5 [ Δ x 1 2 ∂ 2 f ∂ x 1 2 + 2 ( Δ x 1 ) ( Δ x 2 ) ∂ 2 f ∂ x 2 ∂ x 1 + Δ x 2 2 ∂ 2 f ∂ x 2 2 ] (\vec{x}-\vec{x_0})H(\vec{x}-\vec{x_0})^T=(x_1-x_1^0,x_2-x_2^0)\left( \begin{array}{ccc} \frac{\partial^2 f }{\partial x_1^2 } & \frac{\partial^2 f }{\partial x_1\partial x_2 }\\ \frac{\partial^2 f }{\partial x_2\partial x_1 } & \frac{\partial^2 f }{\partial x_2^2 } \end{array} \right)\left( \begin{array}{ccc} x_1-x_1^0 \\ x_2-x_2^0 \end{array} \right)=0.5[(x_1-x_1^0)^2\frac{\partial^2 f }{\partial x_1^2 } +2(x_1-x_1^0)(x_2-x_2^0)\frac{\partial^2 f }{\partial x_2\partial x_1 }+(x_2-x_2^0)^2 \frac{\partial^2 f }{\partial x_2^2 }]=0.5[\Delta x_1^2\frac{\partial^2 f }{\partial x_1^2 } +2(\Delta x_1)(\Delta x_2)\frac{\partial^2 f }{\partial x_2\partial x_1 }+\Delta x_2^2 \frac{\partial^2 f }{\partial x_2^2 }] (x x0 )H(x x0 )T=(x1x10,x2x20)(x122fx2x12fx1x22fx222f)(x1x10x2x20)=0.5[(x1x10)2x122f+2(x1x10)(x2x20)x2x12f+(x2x20)2x222f]=0.5[Δx12x122f+2(Δx1)(Δx2)x2x12f+Δx22x222f]

H正定: ∀ v ⃗ , v ⃗ H v ⃗ T > 0 \forall \vec{v},\vec{v}H\vec{v}^T>0 v ,v Hv T>0,往任意方向都会变大,证明这点取极小值
H负定: ∀ v ⃗ , v ⃗ H v ⃗ T < 0 \forall \vec{v}, \vec{v}H\vec{v}^T<0 v ,v Hv T<0,往任意方向都会变小,证明这点取极大值
H不定: ∃ , v 1 ⃗ v 1 ⃗ H v 1 ⃗ T < 0 , ∃ v 2 ⃗ , v 2 ⃗ H v 2 ⃗ T > 0 \exists ,\vec{v_1} \vec{v_1}H\vec{v_1}^T<0,\exists \vec{v_2}, \vec{v_2}H\vec{v_2}^T>0 ,v1 v1 Hv1 T<0v2 ,v2 Hv2 T>0

5、拉格朗日乘数法

隐函数定理:
f ( x 1 , . . . x n ) f(x_1,...x_n) f(x1,...xn)
φ 1 ( x 1 , . . . x n ) = 0 φ 2 ( x 1 , . . . x n ) = 0 . . . φ m ( x 1 , . . . x n ) = 0 } x n − m + 1 = g n − m + 1 ( x 1 , . . . x n − m ) x n − m + 2 = g n − m + 2 ( x 1 , . . . x n − m ) . . . x n = g n ( x 1 , . . . x n − m ) \left. \begin{aligned} \varphi_1(x_1,...x_n)=0\\ \varphi_2(x_1,...x_n)=0\\ ...\\ \varphi_m(x_1,...x_n)=0 \end{aligned} \right\} \begin{aligned} x_{n-m+1}=g_{n-m+1}(x_1,...x_{n-m})\\ x_{n-m+2}=g_{n-m+2}(x_1,...x_{n-m})\\ ...\\ x_n=g_n(x_1,...x_{n-m}) \end{aligned} φ1(x1,...xn)=0φ2(x1,...xn)=0...φm(x1,...xn)=0 xnm+1=gnm+1(x1,...xnm)xnm+2=gnm+2(x1,...xnm)...xn=gn(x1,...xnm)可替换f中对应的变量,将求带条件的极值转化为求不带条件的极值

f ( x 1 , . . . , x n ) = k ( x 1 , . . . , x m ) f(x_1,...,x_n)=k(x_1,...,x_m) f(x1,...,xn)=k(x1,...,xm)

∂ k ∂ x 1 = ∂ f ∂ x 1 + ∂ f ∂ g n − m + 1 ∂ g n − m + 1 ∂ x 1 + . . . + ∂ f ∂ g n ∂ g n ∂ x 1 \frac{\partial k}{\partial x_1}=\frac{\partial f}{\partial x_1}+\frac{\partial f}{\partial g_{n-m+1}}\frac{\partial g_{n-m+1}}{\partial x_1}+...+\frac{\partial f}{\partial g_{n}}\frac{\partial g_{n}}{\partial x_1} x1k=x1f+gnm+1fx1gnm+1+...+gnfx1gn

( ∂ f ( x 0 ⃗ ) ∂ x 1 , . . . , ∂ f ( x 0 ⃗ ) ∂ x n − m ) + ( ∂ f ( x 0 ⃗ ) ∂ x n − m + 1 , . . . , ∂ f ( x 0 ⃗ ) ∂ x n ) g ′ ( x 0 ⃗ ′ ) = 0 (\frac{\partial f(\vec{x_0})}{\partial x_1},...,\frac{\partial f(\vec{x_0})}{\partial x_{n-m}})+(\frac{\partial f(\vec{x_0})}{\partial x_{n-m+1}},...,\frac{\partial f(\vec{x_0})}{\partial x_n})g'(\vec{x_0}')=0 (x1f(x0 ),...,xnmf(x0 ))+(xnm+1f(x0 ),...,xnf(x0 ))g(x0 )=0,第一项与前式 ∂ f ∂ x 1 \frac{\partial f}{\partial x_1} x1f对应,余下项与前式余下项对应

g ′ ( x 0 ⃗ ′ ) = − ( ∂ φ 1 ( x 0 ) ∂ x n − m + 1 . . . ∂ φ 1 ( x 0 ) ∂ x n . . . . . . ∂ φ m ( x 0 ) ∂ x n − m + 1 . . . ∂ φ m ( x 0 ) ∂ x n ) − 1 ( ∂ φ 1 ( x 0 ) ∂ x 1 . . . ∂ φ 1 ( x 0 ) ∂ x n − m . . . . . . ∂ φ m ( x 0 ) ∂ x 1 . . . ∂ φ m ( x 0 ) ∂ x n − m ) g'(\vec{x_0}')=-\left( \begin{array}{ccc} \frac{\partial \varphi_1(x_0)}{\partial x_{n-m+1} } &...&\frac{\partial \varphi_1(x_0)}{\partial x_n}\\ ...&&...\\ \frac{\partial \varphi_m(x_0)}{\partial x_{n-m+1} } &... &\frac{\partial \varphi_m(x_0)}{\partial x_{n} } \end{array} \right)^{-1}\left( \begin{array}{ccc} \frac{\partial \varphi_1(x_0)}{\partial x_1 } &...&\frac{\partial \varphi_1(x_0)}{\partial x_{n-m}}\\ ...&&...\\ \frac{\partial \varphi_m(x_0)}{\partial x_1 } &... &\frac{\partial \varphi_m(x_0)}{\partial x_{n-m} } \end{array} \right) g(x0 )= xnm+1φ1(x0)...xnm+1φm(x0)......xnφ1(x0)...xnφm(x0) 1 x1φ1(x0)...x1φm(x0)......xnmφ1(x0)...xnmφm(x0)

1*(n-m)维+(1m维)(m*m维),可以通过 ∂ x n − m + 1 ∂ φ 1 ∂ φ 1 ∂ x 1 = ∂ x n − m + 1 ∂ x 1 \frac{\partial x_{n-m+1}}{\partial \varphi_1 }\frac{\partial \varphi_1}{\partial x_1}=\frac{\partial x_{n-m+1}}{\partial x_1 } φ1xnm+1x1φ1=x1xnm+1理解 g ′ ( x 0 ⃗ ′ ) g'(\vec{x_0}') g(x0 )的构成。

( λ 1 , λ 2 , . . . , λ m ) = ( ∂ f ( x 0 ⃗ ) ∂ x n − m + 1 , . . . , ∂ f ( x 0 ⃗ ) ∂ x n ) ∗ g ′ ( x 0 ⃗ ′ ) 的第一项 = ( ∂ f ( x 0 ⃗ ) ∂ x n − m + 1 , . . . , ∂ f ( x 0 ⃗ ) ∂ x n ) ( − ( ∂ φ 1 ( x 0 ) ∂ x n − m + 1 . . . ∂ φ 1 ( x 0 ) ∂ x n . . . . . . ∂ φ m ( x 0 ) ∂ x n − m + 1 . . . ∂ φ m ( x 0 ) ∂ x n ) − 1 ) (\lambda_1,\lambda_2,...,\lambda_m)=(\frac{\partial f(\vec{x_0})}{\partial x_{n-m+1}},...,\frac{\partial f(\vec{x_0})}{\partial x_n})*g'(\vec{x_0}')的第一项=(\frac{\partial f(\vec{x_0})}{\partial x_{n-m+1}},...,\frac{\partial f(\vec{x_0})}{\partial x_n})\left(-\left( \begin{array}{ccc} \frac{\partial \varphi_1(x_0)}{\partial x_{n-m+1} } &...&\frac{\partial \varphi_1(x_0)}{\partial x_n}\\ ...&&...\\ \frac{\partial \varphi_m(x_0)}{\partial x_{n-m+1} } &... &\frac{\partial \varphi_m(x_0)}{\partial x_{n} } \end{array} \right)^{-1}\right) (λ1,λ2,...,λm)=(xnm+1f(x0 ),...,xnf(x0 ))g(x0 )的第一项=(xnm+1f(x0 ),...,xnf(x0 )) xnm+1φ1(x0)...xnm+1φm(x0)......xnφ1(x0)...xnφm(x0) 1 ( λ 1 , λ 2 , . . . , λ m ) (\lambda_1,\lambda_2,...,\lambda_m) (λ1,λ2,...,λm) g ′ ( x 0 ⃗ ′ ) g'(\vec{x_0}') g(x0 )的第二项的第一列相乘有:

∂ f ∂ x 1 + λ 1 ∂ φ 1 ∂ x 1 + λ 2 ∂ φ 2 ∂ x 1 + . . . + λ m ∂ φ m ∂ x 1 = 0 \frac{\partial f}{\partial x_1}+\lambda_1\frac{\partial \varphi_1}{\partial x_1}+\lambda_2\frac{\partial \varphi_2}{\partial x_1}+...+\lambda_m\frac{\partial \varphi_m}{\partial x_1}=0 x1f+λ1x1φ1+λ2x1φ2+...+λmx1φm=0

F = f + λ 1 φ 1 + λ 2 φ 2 + . . . + λ m φ m F=f+\lambda_1\varphi_1+\lambda_2\varphi_2+...+\lambda_m\varphi_m F=f+λ1φ1+λ2φ2+...+λmφm ∂ F ∂ x i = 0 \frac{\partial F}{\partial x_i}=0 xiF=0,i从1到n-m,

( λ 1 , λ 2 , . . . , λ m ) = ( ∂ f ( x 0 ⃗ ) ∂ x n − m + 1 , . . . , ∂ f ( x 0 ⃗ ) ∂ x n ) ( − ( ∂ φ 1 ( x 0 ) ∂ x n − m + 1 . . . ∂ φ 1 ( x 0 ) ∂ x n . . . . . . ∂ φ m ( x 0 ) ∂ x n − m + 1 . . . ∂ φ m ( x 0 ) ∂ x n ) − 1 ) (\lambda_1,\lambda_2,...,\lambda_m)=(\frac{\partial f(\vec{x_0})}{\partial x_{n-m+1}},...,\frac{\partial f(\vec{x_0})}{\partial x_n})\left(- \left( \begin{array}{ccc} \frac{\partial \varphi_1(x_0)}{\partial x_{n-m+1} } &...&\frac{\partial \varphi_1(x_0)}{\partial x_n}\\ ...&&...\\ \frac{\partial \varphi_m(x_0)}{\partial x_{n-m+1} } &... &\frac{\partial \varphi_m(x_0)}{\partial x_{n} } \end{array} \right)^{-1}\right) (λ1,λ2,...,λm)=(xnm+1f(x0 ),...,xnf(x0 )) xnm+1φ1(x0)...xnm+1φm(x0)......xnφ1(x0)...xnφm(x0) 1 ( λ 1 , λ 2 , . . . , λ m ) ( ∂ φ 1 ( x 0 ) ∂ x n − m + 1 . . . ∂ φ 1 ( x 0 ) ∂ x n . . . . . . ∂ φ m ( x 0 ) ∂ x n − m + 1 . . . ∂ φ m ( x 0 ) ∂ x n ) + ( ∂ f ( x 0 ⃗ ) ∂ x n − m + 1 , . . . , ∂ f ( x 0 ⃗ ) ∂ x n ) = 0 (\lambda_1,\lambda_2,...,\lambda_m)\left( \begin{array}{ccc} \frac{\partial \varphi_1(x_0)}{\partial x_{n-m+1} } &...&\frac{\partial \varphi_1(x_0)}{\partial x_n}\\ ...&&...\\ \frac{\partial \varphi_m(x_0)}{\partial x_{n-m+1} } &... &\frac{\partial \varphi_m(x_0)}{\partial x_{n} } \end{array} \right)+(\frac{\partial f(\vec{x_0})}{\partial x_{n-m+1}},...,\frac{\partial f(\vec{x_0})}{\partial x_n})=0 (λ1,λ2,...,λm) xnm+1φ1(x0)...xnm+1φm(x0)......xnφ1(x0)...xnφm(x0) +(xnm+1f(x0 ),...,xnf(x0 ))=0得:

∂ f ∂ x n − m + 1 + λ 1 ∂ φ 1 ∂ x n − m + 1 + λ 2 ∂ φ 2 ∂ x n − m + 1 + . . . + λ m ∂ φ m ∂ x n − m + 1 = 0 \frac{\partial f}{\partial x_{n-m+1}}+\lambda_1\frac{\partial \varphi_1}{\partial x_{n-m+1}}+\lambda_2\frac{\partial \varphi_2}{\partial x_{n-m+1}}+...+\lambda_m\frac{\partial \varphi_m}{\partial x_{n-m+1}}=0 xnm+1f+λ1xnm+1φ1+λ2xnm+1φ2+...+λmxnm+1φm=0即为 ∂ F ∂ x n − m + 1 = 0 \frac{\partial F}{\partial x_{n-m+1}}=0 xnm+1F=0

∂ F ∂ x i = 0 \frac{\partial F}{\partial x_i}=0 xiF=0,i从n-m+1到n。f在点 x 0 ⃗ 、 λ ⃗ \vec{x_0}、\vec{\lambda} x0 λ 满足式子 ∂ F ∂ x i = 0 \frac{\partial F}{\partial x_i}=0 xiF=0(n个式子),同时满足条件 φ 1 ( x 0 ⃗ ) = φ 2 ( x 0 ⃗ ) = . . . = 0 \varphi_1(\vec{x_0})=\varphi_2(\vec{x_0})=...=0 φ1(x0 )=φ2(x0 )=...=0,在 x 0 ⃗ \vec{x_0} x0 取极值。通过隐函数方法把条件带回去,将条件极值转化为非条件极值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值