数学基础——微积分在机器/深度学习上的应用

目录

微分学

导数

偏导数

梯度

梯度下降算法

反向传播算法 

自动求导 

计算图

正则化与过拟合 

L1正则化

L2正则化

Dropout正则化

拉格朗日对偶问题

拉格朗日乘数法

凸优化

对偶问题

Slater条件

KKT条件

积分学 

笔记内容


微积分是17世纪后半叶发展起来的数学的一个分支。微积分有两个分支:微分学和积分学。

微分学

微积分(导数)涉及各种变化率的研究,包括切线的斜率。

导数

一元函数曲线上的切线斜率,也就是函数在该点的变化率。

偏导数

一元函数延伸到多元函数为一个曲面时,找到曲面上沿X、Y轴方向的切线斜率,偏导数就是该多元函数沿坐标轴的变化率。

梯度

函数在该点处的方向导数沿着该方向取得最大值,即函数在当前位置的导数

梯度下降算法

梯度下降算法是机器学习和深度学习中最常用的优化算法。

反向传播算法 

反向传播算法的梯度下降法,求损失函数关于权重参数的偏导数

自动求导 

深度学习框架可以自动计算导数:根据设计好的模型,系统会构建一个计算图。当定义一个变量并指定它需要计算梯度时,框架会跟踪所有与

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值