简单认识加扰与解扰

加扰是数字信号处理的一种技术,通过扰码与原始信号相乘,改变信号的统计特性,常用于同步、加密、扩频和区分不同设备。在CDMA系统中,扰码用于扩频和设备区分。解扰是加扰的逆过程,确保信号能正确恢复。文章提到,早期的逻辑学概念如今在复杂的电路设计中发挥关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前段时间看一个开源说明书,里面的Descramber翻译的时候我一脸懵逼,这个和安全什么关系。

后面问了一下师兄才知道这个在芯片设计中会通过这些逻辑结构来改变传输的数据。

后面进一步的看了一丢丢肤浅的概念。

这个玩意最先的出现是在通信领域,用来进行通信信号的加扰:

  • 1、加扰的作用
    Scrambling,加扰,是数字信号的加工处理方法,就是用扰码与原始信号相乘,从而得到新的信号。与原始信号相比,新的信号在时间上、频率上被打散。 因此,从广义上说,加扰也是一种调制技术。加扰也有一个逆操作,就是解扰。
    加扰技术:不用增加多余度而搅乱信号,改变数字信号统计特性,使其近似于白噪声统计特性的一种技术。这种技术的基础是建立在反馈移存器序列(或伪随机序列)理论之上的。

    加扰广泛应用在数字通信中,主要有以下四种用途:

      1. 为了原始信号避免连‘0’、‘1’,从而方便同步。
      1. 加密,在PHS、GSM、WCDMA乃至LTE,通信加密都是通过加扰实现的。
      1. 扩频,在CDMA技术中,加扰用于将原始信号扩频。
      1. 区分,在CDMA技术中,扰码用于区分不同的设备。
        为了实现以上的要求,加扰采用的扰码是伪随机噪声序列PN。

这里对于解扰就不进行多余的解释了,就是与加扰是对应的,逻辑运算,总会回到起点!!!

致敬伟大的逻辑学家。

莱布尼茨看得很远,但还没有远到这种程度。布尔几乎不可能想到,他的逻辑代数会被用于设计复杂的电路。如果弗雷格发现与他的逻辑规则等价的东西会与实现演绎的计算机程序融为一体,他定会大吃一惊。康托尔当然从未料到他的对角线方法会产生出来什么样的结果。希尔伯特用于确保数学基础的纲领被引向了一个非常不同的方向。即便是一直过着心灵生活的哥德尔,也几乎没有想到自己的工作可以在机械装置上得到应用。

感谢前辈的blog
https://blog.csdn.net/gsjthxy/article/details/104883627/
https://www.cnblogs.com/xlj233/p/15940540.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TrustZone_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值