ELO用户忠诚度评分建模

特征选择:可以选择一些重要的数据先建模试一下哪个模型比较好
 由于此前创建了数千条特征,若带入全部特征进行建模,势必极大程度延长模型建模时间,并且带入太多无关特征对模型结果提升有限,因此此处我们借助皮尔逊相关系数,挑选和标签最相关的300个特征进行建模。当然此处300也可以自行调整
 这里为什么使用皮尔逊相关系数:皮尔逊相关系数是连续变量之间的相关性评估方法,这里有很多离散变量,为什么还要使用呢,因为我们把那些新生成的特征都当做连续变量来看待,因为之前业务统计特征进行一些统计指标,都是对于连续变量的,我们默认是连续变量,对于python而言,如果不进行独热编码,都默认是连续字段

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值