朗道-西格尔零点猜想(the Landau-Siegel Zeros Conjecture)

1 简介

朗道-西格尔零点猜想(the Landau-Siegel Zeros Conjecture),是一个数学难题。

要理解朗道-西格尔零点猜想,首先需要理解黎曼猜想,进而需理解广义黎曼猜想,以及狄利克雷L函数。断言L函数没有异常零点(西格尔零点)的猜测就被称为Landau-Siegel猜想。

2 黎曼猜想

可以参见我以前写的文章:
黎曼猜想简介:https://blog.csdn.net/zephyr_wang/article/details/125340716

在实数范围内,黎曼函数如下表示,在实部大于1下,黎曼函数才收敛。可以看到与下面的L函数很类似。
在这里插入图片描述

3 广义黎曼猜想

狄利克雷在1831年为了证明狄利克雷定理而引进狄利克雷L函数。

狄利克雷L函数下的广义黎曼猜想最初可能是由皮尔茨(Piltz)于1884年提出的。与原始的黎曼猜想类似,该猜想对研究素数分布十分重要。

如一个已知的狄利克雷特征χ,可以定义如下狄利克雷L函数。
在这里插入图片描述

其中,s为实部大于1的所有复数。这一函数可以解析延宕为整个复平面上的亚纯函数。

广义黎曼猜想(generalized Riemann hypothesis,GRH)即是指,狄利克雷L函数L(χ,s)的所有非平凡零点的实部都为1/2。
当对所有n都有χ(n) = 1时,广义黎曼猜想退化为普通的黎曼猜想。

4 狄利克雷特征

狄利克雷特征是一种算术函数,它用来定义L函数。两者都是由狄利克雷在1831年为了证明狄利克雷定理而引进。

狄利克雷特征是一个定义在整数上,值域为 C 的函数 χ ,满足:

  1. χ(n+N)=χ(n) (N>0为一整数常数)
  2. χ(1)=1
  3. χ(nm)=χ(n)χ(m)
  4. χ(x)=0(gcd(x,N)≠1)

只要满足以上四条就是一个狄利克雷特征,狄利克雷特征不唯一。
gcd(greatest common divisor)又称辗转相除法,用于计算两个整数a,b的最大公约数

5 狄利克雷L函数

在这里插入图片描述

6 狄利克雷定理

狄利克雷(1805~1859) Dirichlet,Peter Gustav Lejeune 德国数学家。对数论、数学分析和数学物理有突出贡献,是解析数论的创始人之一。

狄利克雷定理:也称为狄利克雷素数定理,是数论领域的定理。指对于任意两个互质整数a和d,存在无限多个形式为a+nd的素数,其中n是正整数。

狄利克雷定理拓展了欧几里得定理(欧几里得定理指出有无穷多个素数)。

如a为3,d为4,3与4互质,存在无穷多个素数(质数):3+n4,如下:
3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, …
其中n等于如下内容:
0, 1, 2, 4, 5, 7, 10, 11, 14, 16, 17, 19, 20, 25, 26, 31, 32, 34, 37, 40, 41, 44, 47, 49, 52, 55, 56, 59, 62, 65, 67, 70, 76, 77, 82, 86, 89, 91, 94, 95, …

关于狄利克雷怎么引入狄利克雷特征和L函数,来证明狄利克雷定理,就暂时不多解释了。

7 朗道-西格尔零点猜想

广义黎曼猜想认为所有L函数的“非平凡零点”都位于一条特定的直线上(即猜测所有L函数的非平凡零点都位于实部为1/2的直线)。

但可惜的是朗道(Landau)发现一些特殊情况下,L函数的“非平凡零点”就是可能会出现在我们要的区域外(我们称呼它为“异常零点(西格尔零点)”)。

因为Landau和Siegel两位数学家在L函数异常零点这个领域里做了开创性的工作,所以异常零点也常常被称为Landau-Siegel零点。而断言L函数没有异常零点(西格尔零点)的猜测就被称为Landau-Siegel猜想。

所以广义黎曼猜想恰好是Landau-Siegel猜想的充分条件,即广义黎曼猜想可以推导出Landau-Siegel猜想,而Landau-Siegel猜想推导不出广义黎曼猜想。

8 张益唐的新结果

在这里插入图片描述
在这里插入图片描述

从上面情况看,张益堂让Landau-Siegel猜想的证明更近了一步。

参考:

  1. 狄利克雷定理简述:https://zhuanlan.zhihu.com/p/578435248
  2. Dirichlet’s theorem on arithmetic progressions:
    https://encyclopedia.thefreedictionary.com/Dirichlet%27s+theorem+on+arithmetic+progressions
  3. 什么是朗道-西格尔零点猜想?https://www.zhihu.com/question/360965839
  4. 张益唐教授作学术报告 分享朗道-西格尔零点猜想相关工作https://baijiahao.baidu.com/s?id=1749072052316772845&wfr=spider&for=pc
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
三次-五次方金兹堡朗道方程是一个偏微分方程,可以使用龙格库塔法进行数值求解。该方程的形式为: iħ∂ψ/∂t = (-ħ²/2m)∂²ψ/∂x² + g|x|^3ψ + f(x,t)ψ 其中,ħ为普朗克常数,m为粒子质量,g为常数,f(x,t)为外势场。 龙格库塔法是一种常用的数值求解方法,其基本思想是将时间轴上的连续微分方程转化为离散形式,通过迭代计算逼近真实解。下面是使用龙格库塔法求解三次-五次方金兹堡朗道方程的基本步骤: 1.将时间轴离散化,设时间步长为Δt,将时间t划分为0, Δt, 2Δt, … , tmax。 2.将空间轴离散化,设空间步长为Δx,将空间区间[-L, L]划分为N个等距的小区间,即x0 = -L, x1 = x0 + Δx, …, xN = L。 3.使用差分方法将偏微分方程转化为离散形式,即 (i/ħ)(ψn+1 - ψn)/Δt = (-ħ²/2m)(ψn+1 - 2ψn + ψn-1)/Δx² + g|x|^3ψn + f(x,t)ψn 其中,n表示时间步长的序号。 4.使用龙格库塔法迭代计算,首先通过前两个时间步长的结果计算出初始值: ψ1 = e^(-iHΔt/2ħ)ψ0 其中,H为哈密顿量,e为指数函数,i为虚数单位。 5.根据龙格库塔法的迭代公式,进行递推计算: k1 = (-iHψn)Δt/ħ k2 = (-iH(ψn + k1/2))Δt/ħ k3 = (-iH(ψn + k2/2))Δt/ħ k4 = (-iH(ψn + k3))Δt/ħ ψn+1 = e^(k1/6 + k2/3 + k3/3 + k4/6)ψn 其中,k1-k4为四个中间量。 6.重复步骤5,直到计算到最后一个时间步长tmax。 需要注意的是,在计算过程中需要对空间和时间步长进行适当的调整,以保证数值解的精度和稳定性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI强仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值