(一)基本概念
1.树的相关概念
a.树的定义:树是n个结点的有限集,在任意非空树中,有且仅有一个特定根的节点
结点拥有的子树数称为结点的度
b.结点间的关系:结点的子树的根称为该结点的孩子,该结点称为孩子的双亲。
2.二叉树的定义
n个结点的有限集合,该集合为空集,或者由一个根节点和两棵不相交的、分别为根结点的左子树和右子树的二叉树组成。
3.二叉树的特点
- 每个结点最多有两棵子树
- 左子树右子树是有顺序的
- 树中某结点只有一颗子树也要区分是左子树还是右子树
4.二叉树的五种基本形态 - 空二叉树
- 只有一个根结点
- 根结点只有左子树
- 根结点只有右子树
- 根结点基友左子树又有右子树
5.特殊二叉树 - 斜树:所有结点都只有左子树的二叉树叫做左斜树,右斜树同理。
特点:每一层只有一个结点,结点的个数与二叉树的深度相同 - 满二叉树:所有分支都存在左子树和右子树,所有叶子都在同一层上,这样的二叉树称为满二叉树。
特点:叶子只能出现在最下层、非叶子结点的度一定是2、所有同深度的二叉树中,满二叉树的结点个数最多。 - 完全二叉树:可以理解为满二叉树的一部分
- 特点:同样的节点数的二叉树,完全二叉树的深度最小;
6.二叉树的性质
节点数目相关结点 - 性质1:在二叉树的第i层上至多有 2 i − 1 2^i-1 2i−1个结点
- 性质2:在二叉树深度为k的二叉树至多有 2 k 2^k 2k个结点
- 性质3:任何一棵二叉树,终端结点数为 n 0 n_0 n0,度为2的节点数为 n 2 n_2 n2,则 n 0 = n 2 + 1 n_0=n_2+1 n0=n2+1
- 性质4:具有n个结点的完全二叉树的深度为 l o g 2 n + 1 log_2n+1 log2n+1
- 性质5:如果一棵有n个结点的完全二叉树的结点按层编号,对任一结点i有
如果i = 1,i是二叉树的根;如果i>1则其双亲是结点 ⌊ i / 2 ⌋ \lfloor i/2 \rfloor ⌊i/2⌋;
如果2i>n,则结点i无左孩子,否则左孩子是结点2i;
如果2i+1>n,则结点i无右孩子,否则其右孩子的结点是2i+1。
(二)树的存储结构
1.一般树的存储
顺序存储位置无法反映逻辑关系
方法名称 | 背景 | 表示方法 | 方法评价 |
---|---|---|---|
双亲表示法 | 所有非根结点可能没有孩子,但是一定有父母 | 在每个结点中,加一个指针指向双亲结点所在的位置 | 可以根据需要设置不同的指针域,例如,长子域、兄弟域。 |
孩子表示法 | 每个节点可能有多棵子树 | 多重链表表示 | 方便查找某个结点的某个孩子或者某个结点的兄弟,但是不太容易知道结点的双亲是谁 |
孩子兄弟表示法 | 一棵树的孩子和右兄弟存在且唯一 | 设置两个指针分别指向该结点的第一个孩子和此结点的右兄弟 |
a.双亲表示法
b.孩子表示法
c.孩子兄弟表示法
2.二叉树的存储结构
a.顺序存储结构:一般只用于完全二叉树
b.二叉链表
(三)二叉树遍历方法
1.前序遍历
先访问根结点,再访问左子树,最后访问右子树。
A-B-D-G-H-C-E-I-F
2.中序遍历
先访问根结点的左子树,然后访问根结点,最后中序遍历右子树。
G-D-H-B-A-E-I-C-F
3.后序遍历
从左到右先叶子结点够根结点的方式
G-H-D-B-I-E-F-C-A
4.层序遍历
从上往下逐级访问
总结:已知前序遍历和中序遍历可以唯一确定一棵二叉树
(四)其他
1.线索二叉树
2.树、森林与二叉树的转换
a.树转换成二叉树
b.森林转换为二叉树