【第六章 树】——《大话数据结构》

(一)基本概念
1.树的相关概念
a.树的定义:树是n个结点的有限集,在任意非空树中,有且仅有一个特定根的节点
结点拥有的子树数称为结点的度
b.结点间的关系:结点的子树的根称为该结点的孩子,该结点称为孩子的双亲。
2.二叉树的定义
n个结点的有限集合,该集合为空集,或者由一个根节点和两棵不相交的、分别为根结点的左子树和右子树的二叉树组成。
3.二叉树的特点

  • 每个结点最多有两棵子树
  • 左子树右子树是有顺序的
  • 树中某结点只有一颗子树也要区分是左子树还是右子树
    4.二叉树的五种基本形态
  • 空二叉树
  • 只有一个根结点
  • 根结点只有左子树
  • 根结点只有右子树
  • 根结点基友左子树又有右子树
    在这里插入图片描述
    5.特殊二叉树
  • 斜树:所有结点都只有左子树的二叉树叫做左斜树,右斜树同理。
    特点:每一层只有一个结点,结点的个数与二叉树的深度相同
  • 满二叉树:所有分支都存在左子树和右子树,所有叶子都在同一层上,这样的二叉树称为满二叉树。
    特点:叶子只能出现在最下层、非叶子结点的度一定是2、所有同深度的二叉树中,满二叉树的结点个数最多。
  • 完全二叉树:可以理解为满二叉树的一部分
  • 特点:同样的节点数的二叉树,完全二叉树的深度最小;
    6.二叉树的性质
    节点数目相关结点
  • 性质1:在二叉树的第i层上至多有 2 i − 1 2^i-1 2i1个结点
  • 性质2:在二叉树深度为k的二叉树至多有 2 k 2^k 2k个结点
  • 性质3:任何一棵二叉树,终端结点数为 n 0 n_0 n0,度为2的节点数为 n 2 n_2 n2,则 n 0 = n 2 + 1 n_0=n_2+1 n0=n2+1
  • 性质4:具有n个结点的完全二叉树的深度为 l o g 2 n + 1 log_2n+1 log2n+1
  • 性质5:如果一棵有n个结点的完全二叉树的结点按层编号,对任一结点i有
    如果i = 1,i是二叉树的根;如果i>1则其双亲是结点 ⌊ i / 2 ⌋ \lfloor i/2 \rfloor i/2
    如果2i>n,则结点i无左孩子,否则左孩子是结点2i;
    如果2i+1>n,则结点i无右孩子,否则其右孩子的结点是2i+1。

(二)树的存储结构
1.一般树的存储
顺序存储位置无法反映逻辑关系

方法名称背景表示方法方法评价
双亲表示法所有非根结点可能没有孩子,但是一定有父母在每个结点中,加一个指针指向双亲结点所在的位置可以根据需要设置不同的指针域,例如,长子域、兄弟域。
孩子表示法每个节点可能有多棵子树多重链表表示方便查找某个结点的某个孩子或者某个结点的兄弟,但是不太容易知道结点的双亲是谁
孩子兄弟表示法一棵树的孩子和右兄弟存在且唯一设置两个指针分别指向该结点的第一个孩子和此结点的右兄弟

在这里插入图片描述

a.双亲表示法
在这里插入图片描述

b.孩子表示法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

c.孩子兄弟表示法
在这里插入图片描述
在这里插入图片描述
2.二叉树的存储结构
a.顺序存储结构:一般只用于完全二叉树
b.二叉链表
在这里插入图片描述
(三)二叉树遍历方法
1.前序遍历
先访问根结点,再访问左子树,最后访问右子树。
在这里插入图片描述
A-B-D-G-H-C-E-I-F
2.中序遍历
先访问根结点的左子树,然后访问根结点,最后中序遍历右子树。
在这里插入图片描述
G-D-H-B-A-E-I-C-F
3.后序遍历
从左到右先叶子结点够根结点的方式
在这里插入图片描述
G-H-D-B-I-E-F-C-A
4.层序遍历
从上往下逐级访问
总结:已知前序遍历和中序遍历可以唯一确定一棵二叉树
(四)其他
1.线索二叉树
2.树、森林与二叉树的转换
a.树转换成二叉树
在这里插入图片描述
b.森林转换为二叉树
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值