目录
学习资料为B站视频:【动态规划专题班】动态规划入门 Introduction to Dynamic Programming
动态规划应对问题
动态规划四大步骤
- 确定状态
1.1 最后一步
1.2 子问题 - 转移方程
- 初始条件和边界条件
- 计算顺序
一、求最大值最小值
以类似LC322. 零钱兑换/硬币兑换为基础讲解
题目:
你有三种硬币:2、5、7元,每种足够多枚
买一本书27元
如何用最少的硬币数,正好付清
1. 确定状态
1.1 最后一步
1.2 子问题
如果用递归方法解?会有什么问题?
- 如何避免:
动态规划,将结果保存下来,并改变计算顺序
2. 转移方程
3. 初始条件和边界条件
- 初始条件
注意f[0] = 0
,转移方程算不出来,需要手动定义,x>0
就不需要了 - 边界条件
注意数组不要越界
4. 计算顺序
- 时间复杂度
金额:n
硬币种类:m
时间复杂度:O(n*m)
代码 LC322. 零钱兑换
int coinChange(vector<int>& coins, int amount) {
if(amount == 0) return 0;
if(coins.size() == 0) return -1;
//声明一个amount+1长度的数组dp, 0...n
//dp代表各个金额,第0个钱包可以容纳的总价值为0,其它全部初始化为无穷大
//dp[j]代表金额为j时,所需要的最少硬币的个数
vector<int>dp(amount + 1 , INT_MAX);
dp[0] = 0;
// dp[1]....dp[amount]
for(int i=0; i<=amount; i++){
// 计算最后的coins[j]
// dp[i] = min{dp[i-coins[0]]+1, ..., dp[i-coins[n-1]+1}
for(int j = 0; j < coins.size(); j++){
if(i >= coins[j] && dp[i-coins[j]] != INT_MAX){
dp[i] = min(dp[i], dp[i-coins[j]]+1);
}
}
return dp[amount] == INT_MAX ? -1 : dp[amount];
}
二、计数问题
1. 确定状态
2. 转移方程
3. 初始和边界条件
4. 计算顺序
代码 LC62. 不同路径
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m, vector<int>(n,1));
for(int i=1; i<m; i++){
for(int j=1; j<n; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
优化:空间复杂度O(n)
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m, vector<int>(n,1));
for(int i=1; i<m; i++){
for(int j=1; j<n; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
代码 LC63. 不同路径II(有障碍)
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if(obstacleGrid[0][0] == 1) return 0;
int n = obstacleGrid.size(), m = obstacleGrid[0].size();
vector<vector<int>> dp(n, vector<int>(m,0));
for(int i=0; i<n; i++){
for(int j=0; j<m; j++){
if(obstacleGrid[i][j] == 1){
dp[i][j] = 0;
}
else{
if(i == 0 && j == 0) dp[i][j] = 1;
else if(i==0) dp[i][j]=dp[i][j-1];
else if(j==0) dp[i][j]=dp[i-1][j];
else dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
}
return dp[n-1][m-1];
}
参考题解:简单DP,🤷♀️必须秒懂!
三、可行性
1. 确定状态
2. 转移方程
3. 初始条件和边界条件
4. 计算顺序
代码 LC55. 跳跃游戏
- 贪心算法
bool canJump(vector<int>& nums) {
int maxLength = 0; // 记录每次能达到的最大位置
for(int i = 0; i<nums.size(); i++){
if(maxLength >= nums.size()-1) return true;
if(maxLength < i) return false;
maxLength = max(maxLength, i+nums[i]);
}
return true;
}
- dp方法超时
总结