麦克风阵列方向图模型

本文讨论了宽带声源信号模型下,麦克风阵列的信号处理,包括波束形成器的原理和与传统Delay-Sum的区别。通过信号右移对齐并相加,实现滤波效果,其中模式函数A(τ)揭示了阵列的方向特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节讨论宽带声源信号模型下的信号模型。
考虑一个白噪声源 s s s(它涵盖了整个频谱),其方差为 σ s 2 = 1 \sigma_{s}^{2}=1 σs2=1
在这一信号模型中,考虑第n个传感器为
y n ( k ) = s [ k − ( n − 1 ) τ s ) ] , n = 1 , 2 , ⋯   , N 式( 1.1 ) y_{n}(k)=s\left[k-(n-1)\tau_{s})\right], \quad n=1,2, \cdots, N \quad式(1.1) yn(k)=s[k(n1)τs)],n=1,2,,N式(1.1
对于远场信号 τ s = d sin ⁡ θ c \tau_{s}=\frac{d \sin \theta}{c} τs=cdsinθ,为信号到达相邻麦克风的时延。式(1.1)可以写为向量形式

y n ( k ) = g ⃗ [ ( n − 1 ) τ s ] s ⃗ ( k ) , n = 1 , 2 , ⋯   , N 式( 1.2 ) {y}_{n}(k)=\vec{g}\left[(n-1)\tau_s\right] \vec{s}(k), n=1,2, \cdots, N\quad式(1.2) yn(k)=g [(n1)τs]s (k),n=1,2,,N式(1.2
其中
g ⃗ [ ( n − 1 ) ⋅ τ s ] = [ 0 ⋯ 0 1 ( n − 1 ) ⋅ τ s 0 ⋯ 0 ] L g T \vec{g}\left[(n-1) \cdot \tau_{s}\right]=\left[\begin{array}{lllllll} 0 & \cdots & 0 & 1_{(n-1) \cdot \tau_{s}} & 0 & \cdots & 0 \end{array}\right]_{L_{g}}^{\mathrm{T}} g [(n1)τs]=[001n1τs00]LgT
为长度为 L g ⩾ ( N − 1 ) ⋅ τ s + 1 L_{g} \geqslant {(N-1)}\cdot\tau_{s}+1 Lg(N1)τs+1的滤波器,其中第 ( n − 1 ) ⋅ τ s + 1 (n-1) \cdot \tau_{s}+1 (n1)τs+1个元素等于1.
其中
s ⃗ ( k ) = [ s ( k ) s ( k − 1 ) ⋯ s [ k − ( n − 1 ) τ s ] ⋯ s ( k − L g + 1 ) ] L g T \vec{s}(k)=\left[s(k) s(k-1) \cdots s\left[k-(n-1)\tau_{s}\right] \cdots s\left(k-L_{g}+1\right)\right]^{\mathrm{T}}_{ L_{g}} s (k)=[s(k)s(k1)s[k(n1)τs]s(kLg+1)]LgT

现在考虑长度为 L h L_{h} Lh的宽带波束形成器,其中第 ( n − 1 ) ⋅ τ + 1 (n-1) \cdot \tau+1 (n1)τ+1个元素等于1.
h ⃗ [ ( n − 1 ) ⋅ τ ] = 1 N [ 0 ⋯ 0 1 ( n − 1 ) ⋅ τ 0 ⋯ 0 ] L h T \vec{h}\left[(n-1) \cdot \tau\right]=\frac{1}{N}\left[\begin{array}{lllllll} 0 & \cdots & 0 & 1_{(n-1) \cdot \tau} & 0 & \cdots & 0 \end{array}\right]_{L_{h}}^{\mathrm{T}} h [(n1)τ]=N1[001n1τ00]LhT
则波束形成后的输出 z ( k ) = ∑ n = 1 N h ⃗ T [ ( N − n ) τ ] y ⃗ n ( k ) = 1 N ∑ n = 1 N y n [ k − ( N − n ) τ ] = 1 N ∑ n = 1 N s [ k − ( N − n ) τ − ( n − 1 ) τ s ] \begin{aligned} z(k) &=\sum_{n=1}^{N} \vec{h}^{\mathrm{T}}\left[(N-n)\tau\right] \vec{y}_{n}(k) \\ &=\frac{1}{N} \sum_{n=1}^{N} y_{n}\left[k-(N-n)\tau\right] \\ &=\frac{1}{N} \sum_{n=1}^{N} s\left[k-(N-n)\tau-(n-1)\tau_{s}\right] \end{aligned} z(k)=n=1Nh T[(Nn)τ]y n(k)=N1n=1Nyn[k(Nn)τ]=N1n=1Ns[k(Nn)τ(n1)τs]
其中
y ⃗ n ( k ) = [ y n ( k ) y n ( k − 1 ) ⋯ y n ( k − L h + 1 ) ] T , n = 1 , 2 , ⋯   , N 式 ( 1.3 ) \vec{y}_{n}(k)=\left[y_{n}(k) y_{n}(k-1) \cdots y_{n}\left(k-L_{h}+1\right)\right]^{\mathrm{T}}, n=1,2, \cdots, N\quad 式(1.3) y n(k)=[yn(k)yn(k1)yn(kLh+1)]T,n=1,2,,N(1.3)
为对信号的进行 L h L_h Lh采样后的向量。
对于 τ = τ s \tau=\tau_{s} τ=τs, z ( k ) = s [ k − ( N − 1 ) τ s ] z(k)=s\left[k-(N-1)\tau_{s}\right] z(k)=s[k(N1)τs]

1.如何理解上面得波束形成器?
信号从到达第一个麦克风,到到达最后一个麦克风结束。此过程中第一个麦克风接收到的信号持续了了 N ⋅ τ s N\cdot \tau_{s} Nτs,第二个麦克风接收到的信号持续了 ( N − 1 ) τ s (N-1) \tau_{s} (N1)τs…第N个麦克风接收到的信号持续了了 1 ⋅ τ s 1\cdot \tau_{s} 1τs。,所以将第一个麦克风信号右移 ( N − 1 ) ⋅ τ s (N-1)\cdot \tau_{s} N1τs对应 y 1 [ k − ( N − 1 ) τ s ] y_{1}[k-(N-1) \tau_{s}] y1[k(N1)τs],将第二个麦克风信号右移 ( N − 2 ) τ s (N-2) \tau_{s} (N2)τs,对应 y 2 [ k − ( N − 2 ) τ s ] y_{2}[k-(N-2) \tau_{s}] y2[k(N2)τs]…最后一个麦克风不动。这样N个麦克风的接收信号经过右移后就会在时间上对齐,这时候再相加除以N就可以得到滤波后的结果。
2.与传统Delay-Sum的区别
传统DS滤波器是在让接收信号与第一个麦克风接收信号对齐,而上面的波束形成方法是与最后一个麦克风接受信号对齐。

上式也可以表示成如下形式: z ( k ) = H T ( τ ) Y ( k ) z(k)=\boldsymbol{H}^{\mathrm{T}}(\tau) \boldsymbol{Y}(k) z(k)=HT(τ)Y(k)
其中
H ( τ ) = [ h ⃗ T [ ( N − 1 ) τ ] h ⃗ T [ ( N − 2 ) τ ] ⋯ h ⃗ T [ 0 ⋅ τ ] ] N ⋅ L h T \boldsymbol{H}(\tau)=\left[\vec{h}^{\mathrm{T}}\left[(N-1)\tau\right] \vec{h}^{\mathrm{T}}\left[(N-2)\tau\right] \cdots \vec{h}^{\mathrm{T}}\left[0\cdot\tau\right]\right]^{\mathrm{T}}_{N\cdot L_h} H(τ)=[h T[(N1)τ]h T[(N2)τ]h T[0τ]]NLhT
Y ( k ) = [ y ⃗ 1 T ( k ) y ⃗ 2 T ( k ) ⋯ y ⃗ N T ( k ) ] N ⋅ L h T \boldsymbol{Y}(k)=\left[{\vec{y}}_{1}^{\mathrm{T}}(k) {\vec{y}}_{2}^{\mathrm{T}}(k) \cdots {\vec{y}}_{N}^{\mathrm{T}}(k)\right]^{\mathrm{T}}_{N\cdot L_h} Y(k)=[y 1T(k)y 2T(k)y NT(k)]NLhT
将式(1.3)写成矩阵乘以向量的形式。
y ⃗ n ( k ) = G [ ( n − 1 ) τ s ] s ⃗ L ( k ) , n = 1 , 2 , ⋯   , N \vec{y}_{n}(k)=\boldsymbol{G}\left[(n-1)\tau_s\right] \vec{s}_{L}(k), n=1,2, \cdots, N y n(k)=G[(n1)τs]s L(k),n=1,2,,N
式中 G [ ( n − 1 ) τ s ] = [ g ⊤ [ ( n − 1 ) τ s ] 0 0 ⋯ 0 0 g T [ ( n − 1 ) τ s ] 0 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ g T [ ( n − 1 ) τ s ] ] , n = 1 , 2 , ⋯   , N \boldsymbol{G}\left[(n-1)\tau_{s}\right]=\left[\begin{array}{ccccc} g^{\top}\left[(n-1)\tau_{s}\right] & 0 & 0 & \cdots & 0 \\ 0 & g^{\mathrm{T}}\left[(n-1)\tau_{s}\right] & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & g^{\mathrm{T}}\left[(n-1)\tau_{s}\right] \end{array}\right], n=1,2, \cdots, N G[(n1)τs]= g[(n1)τs]000gT[(n1)τs]000000gT[(n1)τs] ,n=1,2,,N
是大小为 L h × L L_{h} \times L Lh×L的Sylvester矩阵, L = L g + L h − 1 L=L_{g}+L_{h}-1 L=Lg+Lh1
Sylvester矩阵第二行是第一行往右移一列,第二行第一列的元素是零。下面的 ( L h − 1 ) (L_h-1) (Lh1)行也是用这种方法得出,每次都往右移一列。
s ⃗ L ( k ) = [ s ( k − t ) s ( k − 1 ) ⋯ s ( k − L + 1 ) ] T \vec{s}_{L}(k)=[s(k-t) s(k-1) \cdots s(k-L+1)]^{\mathrm{T}} s L(k)=[s(kt)s(k1)s(kL+1)]T
z ( k ) z(k) z(k)可以写为:
z ( k ) = H T ( τ ) G ( N τ s ) s L ( k ) z(k)=H^{\mathrm{T}}(\tau) G\left(N\tau_{s}\right) s_{L}(k) z(k)=HT(τ)G(Nτs)sL(k)
其中
G ( N τ s ) = [ G [ 0 ⋅ τ s ] G [ 1 ⋅ τ s ] ⋮ G [ ( N − 1 ) ⋅ τ s ] ] N L h × L \boldsymbol{G}\left(N\tau_{s}\right)=\left[\begin{array}{c} \boldsymbol{G}\left[0\cdot\tau_{s}\right] \\ \boldsymbol{G}\left[1\cdot\tau_{s}\right] \\ \vdots \\ \boldsymbol{G}\left[(N-1)\cdot\tau_{s}\right] \end{array}\right]_{N L_{h}\times {L} } G(Nτs)= G[0τs]G[1τs]G[(N1)τs] NLh×L
可以看作方向矩阵,包含了有关目标信号位置的所有信息。因此波束形成输出的方差为 E [ z 2 ( k ) ] = ∥ G T ( N ⋅ τ s ) H ( τ ) ∥ 2 2 E\left[z^{2}(k)\right]=\left\|G^{\mathrm{T}}\left(N\cdot\tau_{s}\right) H(\tau)\right\|_{2}^{2} E[z2(k)]= GT(Nτs)H(τ) 22定义麦克风阵列的模式函数为: A ( τ ) = 1 − ∥ G T ( N ⋅ τ s ) H ( τ ) − u [ ( N − 1 ) ⋅ τ ] ∥ 2 \mathcal{A}(\tau)=1-\left\|\boldsymbol{G}^{\mathrm{T}}\left(N\cdot\tau_{s}\right) H(\tau)-\boldsymbol{u}\left[(N-1)\cdot\tau\right]\right\|_{2} A(τ)=1 GT(Nτs)H(τ)u[(N1)τ] 2
其中
u [ ( N − 1 ) τ ] = [ 0 ⋯ 0 1 0 ⋯ 0 ] ⊤ u\left[(N-1)\tau\right]=[0 \cdots 0 \quad 1\quad0 \cdots 0]^{\top} u[(N1)τ]=[00100]
是长度为L的矢量,其中第 ( N − 1 ) ⋅ τ (N-1)\cdot\tau (N1)τ个元素等于1。表示滤波的结果是逼近第N个麦克风接收的信号。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值