本节讨论宽带声源信号模型下的信号模型。
考虑一个白噪声源
s
s
s(它涵盖了整个频谱),其方差为
σ
s
2
=
1
\sigma_{s}^{2}=1
σs2=1。
在这一信号模型中,考虑第n个传感器为
y
n
(
k
)
=
s
[
k
−
(
n
−
1
)
τ
s
)
]
,
n
=
1
,
2
,
⋯
,
N
式(
1.1
)
y_{n}(k)=s\left[k-(n-1)\tau_{s})\right], \quad n=1,2, \cdots, N \quad式(1.1)
yn(k)=s[k−(n−1)τs)],n=1,2,⋯,N式(1.1)
对于远场信号
τ
s
=
d
sin
θ
c
\tau_{s}=\frac{d \sin \theta}{c}
τs=cdsinθ,为信号到达相邻麦克风的时延。式(1.1)可以写为向量形式
y
n
(
k
)
=
g
⃗
[
(
n
−
1
)
τ
s
]
s
⃗
(
k
)
,
n
=
1
,
2
,
⋯
,
N
式(
1.2
)
{y}_{n}(k)=\vec{g}\left[(n-1)\tau_s\right] \vec{s}(k), n=1,2, \cdots, N\quad式(1.2)
yn(k)=g[(n−1)τs]s(k),n=1,2,⋯,N式(1.2)
其中
g
⃗
[
(
n
−
1
)
⋅
τ
s
]
=
[
0
⋯
0
1
(
n
−
1
)
⋅
τ
s
0
⋯
0
]
L
g
T
\vec{g}\left[(n-1) \cdot \tau_{s}\right]=\left[\begin{array}{lllllll} 0 & \cdots & 0 & 1_{(n-1) \cdot \tau_{s}} & 0 & \cdots & 0 \end{array}\right]_{L_{g}}^{\mathrm{T}}
g[(n−1)⋅τs]=[0⋯01(n−1)⋅τs0⋯0]LgT
为长度为
L
g
⩾
(
N
−
1
)
⋅
τ
s
+
1
L_{g} \geqslant {(N-1)}\cdot\tau_{s}+1
Lg⩾(N−1)⋅τs+1的滤波器,其中第
(
n
−
1
)
⋅
τ
s
+
1
(n-1) \cdot \tau_{s}+1
(n−1)⋅τs+1个元素等于1.
其中
s
⃗
(
k
)
=
[
s
(
k
)
s
(
k
−
1
)
⋯
s
[
k
−
(
n
−
1
)
τ
s
]
⋯
s
(
k
−
L
g
+
1
)
]
L
g
T
\vec{s}(k)=\left[s(k) s(k-1) \cdots s\left[k-(n-1)\tau_{s}\right] \cdots s\left(k-L_{g}+1\right)\right]^{\mathrm{T}}_{ L_{g}}
s(k)=[s(k)s(k−1)⋯s[k−(n−1)τs]⋯s(k−Lg+1)]LgT
现在考虑长度为
L
h
L_{h}
Lh的宽带波束形成器,其中第
(
n
−
1
)
⋅
τ
+
1
(n-1) \cdot \tau+1
(n−1)⋅τ+1个元素等于1.
h
⃗
[
(
n
−
1
)
⋅
τ
]
=
1
N
[
0
⋯
0
1
(
n
−
1
)
⋅
τ
0
⋯
0
]
L
h
T
\vec{h}\left[(n-1) \cdot \tau\right]=\frac{1}{N}\left[\begin{array}{lllllll} 0 & \cdots & 0 & 1_{(n-1) \cdot \tau} & 0 & \cdots & 0 \end{array}\right]_{L_{h}}^{\mathrm{T}}
h[(n−1)⋅τ]=N1[0⋯01(n−1)⋅τ0⋯0]LhT
则波束形成后的输出
z
(
k
)
=
∑
n
=
1
N
h
⃗
T
[
(
N
−
n
)
τ
]
y
⃗
n
(
k
)
=
1
N
∑
n
=
1
N
y
n
[
k
−
(
N
−
n
)
τ
]
=
1
N
∑
n
=
1
N
s
[
k
−
(
N
−
n
)
τ
−
(
n
−
1
)
τ
s
]
\begin{aligned} z(k) &=\sum_{n=1}^{N} \vec{h}^{\mathrm{T}}\left[(N-n)\tau\right] \vec{y}_{n}(k) \\ &=\frac{1}{N} \sum_{n=1}^{N} y_{n}\left[k-(N-n)\tau\right] \\ &=\frac{1}{N} \sum_{n=1}^{N} s\left[k-(N-n)\tau-(n-1)\tau_{s}\right] \end{aligned}
z(k)=n=1∑NhT[(N−n)τ]yn(k)=N1n=1∑Nyn[k−(N−n)τ]=N1n=1∑Ns[k−(N−n)τ−(n−1)τs]
其中
y
⃗
n
(
k
)
=
[
y
n
(
k
)
y
n
(
k
−
1
)
⋯
y
n
(
k
−
L
h
+
1
)
]
T
,
n
=
1
,
2
,
⋯
,
N
式
(
1.3
)
\vec{y}_{n}(k)=\left[y_{n}(k) y_{n}(k-1) \cdots y_{n}\left(k-L_{h}+1\right)\right]^{\mathrm{T}}, n=1,2, \cdots, N\quad 式(1.3)
yn(k)=[yn(k)yn(k−1)⋯yn(k−Lh+1)]T,n=1,2,⋯,N式(1.3)
为对信号的进行
L
h
L_h
Lh采样后的向量。
对于
τ
=
τ
s
\tau=\tau_{s}
τ=τs,
z
(
k
)
=
s
[
k
−
(
N
−
1
)
τ
s
]
z(k)=s\left[k-(N-1)\tau_{s}\right]
z(k)=s[k−(N−1)τs]。
1.如何理解上面得波束形成器?
信号从到达第一个麦克风,到到达最后一个麦克风结束。此过程中第一个麦克风接收到的信号持续了了
N
⋅
τ
s
N\cdot \tau_{s}
N⋅τs,第二个麦克风接收到的信号持续了
(
N
−
1
)
τ
s
(N-1) \tau_{s}
(N−1)τs…第N个麦克风接收到的信号持续了了
1
⋅
τ
s
1\cdot \tau_{s}
1⋅τs。,所以将第一个麦克风信号右移
(
N
−
1
)
⋅
τ
s
(N-1)\cdot \tau_{s}
(N−1)⋅τs对应
y
1
[
k
−
(
N
−
1
)
τ
s
]
y_{1}[k-(N-1) \tau_{s}]
y1[k−(N−1)τs],将第二个麦克风信号右移
(
N
−
2
)
τ
s
(N-2) \tau_{s}
(N−2)τs,对应
y
2
[
k
−
(
N
−
2
)
τ
s
]
y_{2}[k-(N-2) \tau_{s}]
y2[k−(N−2)τs]…最后一个麦克风不动。这样N个麦克风的接收信号经过右移后就会在时间上对齐,这时候再相加除以N就可以得到滤波后的结果。
2.与传统Delay-Sum的区别
传统DS滤波器是在让接收信号与第一个麦克风接收信号对齐,而上面的波束形成方法是与最后一个麦克风接受信号对齐。
上式也可以表示成如下形式:
z
(
k
)
=
H
T
(
τ
)
Y
(
k
)
z(k)=\boldsymbol{H}^{\mathrm{T}}(\tau) \boldsymbol{Y}(k)
z(k)=HT(τ)Y(k)
其中
H
(
τ
)
=
[
h
⃗
T
[
(
N
−
1
)
τ
]
h
⃗
T
[
(
N
−
2
)
τ
]
⋯
h
⃗
T
[
0
⋅
τ
]
]
N
⋅
L
h
T
\boldsymbol{H}(\tau)=\left[\vec{h}^{\mathrm{T}}\left[(N-1)\tau\right] \vec{h}^{\mathrm{T}}\left[(N-2)\tau\right] \cdots \vec{h}^{\mathrm{T}}\left[0\cdot\tau\right]\right]^{\mathrm{T}}_{N\cdot L_h}
H(τ)=[hT[(N−1)τ]hT[(N−2)τ]⋯hT[0⋅τ]]N⋅LhT
Y
(
k
)
=
[
y
⃗
1
T
(
k
)
y
⃗
2
T
(
k
)
⋯
y
⃗
N
T
(
k
)
]
N
⋅
L
h
T
\boldsymbol{Y}(k)=\left[{\vec{y}}_{1}^{\mathrm{T}}(k) {\vec{y}}_{2}^{\mathrm{T}}(k) \cdots {\vec{y}}_{N}^{\mathrm{T}}(k)\right]^{\mathrm{T}}_{N\cdot L_h}
Y(k)=[y1T(k)y2T(k)⋯yNT(k)]N⋅LhT
将式(1.3)写成矩阵乘以向量的形式。
y
⃗
n
(
k
)
=
G
[
(
n
−
1
)
τ
s
]
s
⃗
L
(
k
)
,
n
=
1
,
2
,
⋯
,
N
\vec{y}_{n}(k)=\boldsymbol{G}\left[(n-1)\tau_s\right] \vec{s}_{L}(k), n=1,2, \cdots, N
yn(k)=G[(n−1)τs]sL(k),n=1,2,⋯,N
式中
G
[
(
n
−
1
)
τ
s
]
=
[
g
⊤
[
(
n
−
1
)
τ
s
]
0
0
⋯
0
0
g
T
[
(
n
−
1
)
τ
s
]
0
⋯
0
⋮
⋮
⋮
⋱
⋮
0
0
0
⋯
g
T
[
(
n
−
1
)
τ
s
]
]
,
n
=
1
,
2
,
⋯
,
N
\boldsymbol{G}\left[(n-1)\tau_{s}\right]=\left[\begin{array}{ccccc} g^{\top}\left[(n-1)\tau_{s}\right] & 0 & 0 & \cdots & 0 \\ 0 & g^{\mathrm{T}}\left[(n-1)\tau_{s}\right] & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & g^{\mathrm{T}}\left[(n-1)\tau_{s}\right] \end{array}\right], n=1,2, \cdots, N
G[(n−1)τs]=
g⊤[(n−1)τs]0⋮00gT[(n−1)τs]⋮000⋮0⋯⋯⋱⋯00⋮gT[(n−1)τs]
,n=1,2,⋯,N
是大小为
L
h
×
L
L_{h} \times L
Lh×L的Sylvester矩阵,
L
=
L
g
+
L
h
−
1
L=L_{g}+L_{h}-1
L=Lg+Lh−1
Sylvester矩阵第二行是第一行往右移一列,第二行第一列的元素是零。下面的
(
L
h
−
1
)
(L_h-1)
(Lh−1)行也是用这种方法得出,每次都往右移一列。
s
⃗
L
(
k
)
=
[
s
(
k
−
t
)
s
(
k
−
1
)
⋯
s
(
k
−
L
+
1
)
]
T
\vec{s}_{L}(k)=[s(k-t) s(k-1) \cdots s(k-L+1)]^{\mathrm{T}}
sL(k)=[s(k−t)s(k−1)⋯s(k−L+1)]T
则
z
(
k
)
z(k)
z(k)可以写为:
z
(
k
)
=
H
T
(
τ
)
G
(
N
τ
s
)
s
L
(
k
)
z(k)=H^{\mathrm{T}}(\tau) G\left(N\tau_{s}\right) s_{L}(k)
z(k)=HT(τ)G(Nτs)sL(k)
其中
G
(
N
τ
s
)
=
[
G
[
0
⋅
τ
s
]
G
[
1
⋅
τ
s
]
⋮
G
[
(
N
−
1
)
⋅
τ
s
]
]
N
L
h
×
L
\boldsymbol{G}\left(N\tau_{s}\right)=\left[\begin{array}{c} \boldsymbol{G}\left[0\cdot\tau_{s}\right] \\ \boldsymbol{G}\left[1\cdot\tau_{s}\right] \\ \vdots \\ \boldsymbol{G}\left[(N-1)\cdot\tau_{s}\right] \end{array}\right]_{N L_{h}\times {L} }
G(Nτs)=
G[0⋅τs]G[1⋅τs]⋮G[(N−1)⋅τs]
NLh×L
可以看作方向矩阵,包含了有关目标信号位置的所有信息。因此波束形成输出的方差为
E
[
z
2
(
k
)
]
=
∥
G
T
(
N
⋅
τ
s
)
H
(
τ
)
∥
2
2
E\left[z^{2}(k)\right]=\left\|G^{\mathrm{T}}\left(N\cdot\tau_{s}\right) H(\tau)\right\|_{2}^{2}
E[z2(k)]=
GT(N⋅τs)H(τ)
22定义麦克风阵列的模式函数为:
A
(
τ
)
=
1
−
∥
G
T
(
N
⋅
τ
s
)
H
(
τ
)
−
u
[
(
N
−
1
)
⋅
τ
]
∥
2
\mathcal{A}(\tau)=1-\left\|\boldsymbol{G}^{\mathrm{T}}\left(N\cdot\tau_{s}\right) H(\tau)-\boldsymbol{u}\left[(N-1)\cdot\tau\right]\right\|_{2}
A(τ)=1−
GT(N⋅τs)H(τ)−u[(N−1)⋅τ]
2
其中
u
[
(
N
−
1
)
τ
]
=
[
0
⋯
0
1
0
⋯
0
]
⊤
u\left[(N-1)\tau\right]=[0 \cdots 0 \quad 1\quad0 \cdots 0]^{\top}
u[(N−1)τ]=[0⋯010⋯0]⊤
是长度为L的矢量,其中第
(
N
−
1
)
⋅
τ
(N-1)\cdot\tau
(N−1)⋅τ个元素等于1。表示滤波的结果是逼近第N个麦克风接收的信号。