LCMV波束形成严谨推导深入细节

LCMV(线性约束最小方差)是MVDR(最小方差无畸变响应)的一种扩展,增加了对干扰方向的约束。本文深入探讨了LCMV的数学模型,介绍了在空间中有期望信号和多个干扰信号的场景下,如何通过解决优化问题来得到波束形成权重矩阵。推导过程涉及拉格朗日乘子法,最终得出LCMV权重矩阵的表达式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LCMV(线性约束最小方差)实际上是MVDR(最小方差无畸变响应)的一种扩展,将MVDR里只对期望方向做约束,变为也对指定的干扰方向加约束。

依然使用MVDR严谨推导里的模型,空间中存在期望信号 x d ( t ) x_{d}(t) xd(t)其导向矢量为 a ( θ d ) a\left(\theta_{d}\right) a(θd),以及M-1个干扰信号 x j ( t ) x_{j}(t) xj(t)其导向矢量为 a ( θ j ) a\left(\theta_{j}\right) a(θj),阵列个数为N

LCMV要求解的问题可以写为:
{ min ⁡ W H R W s.t.A H ( θ ) W = g \left\{\begin{array}{c} \min W^{H} R W \\ \text {s.t.A}^{H}(\theta) W=g \end{array}\right. {minWHRWs.t.AH(θ)W=g

其中 A ( θ ) = [ a ( θ d ) , a ( θ j ) , … . a ( θ M − 1 ) ] N × M A(\theta)=\left[a\left(\theta_{d}\right), a\left(\theta_{j}\right), \ldots . a\left(\theta_{M-1}\right)\right]_{N \times M} A(θ)=[a(θd),a(θj),.a(θM1)]N×M
g = [ 1 0 ⋯ 0 ] M × 1 g=\left[\begin{array}{c}1 \\ 0 \\ \cdots \\ 0\end{array}\right]_{M \times 1} g= 100 M×1

构造拉格朗日方程:
L ( ω ) = ω H R ω − ( ω H A ( θ ) − g ) λ ⃗ L(\omega)=\omega^{\mathrm{H}} \boldsymbol{R} \omega-\left(\omega^{\mathrm{H}} \boldsymbol{A(\theta)}-g\right)\vec{\lambda} L(ω)=ωHRω(ωHA(θ)g)λ
得:
∂ L ( w ) ∂ w H = R w − A ( θ ) λ ⃗ = 0 w o p t = R − 1 A ( θ ) λ ⃗ \begin{array}{l} \frac{\partial L(w)}{\partial w^{H}}=R w- A(\theta) \vec{\lambda}=0 \\ w_{o p t}=R^{-1} A(\theta) \vec{\lambda} \end{array} wHL(w)=RwA(θ)λ =0wopt=R1A(θ)λ

两端同乘约束:
A H ( θ ) w o p t = A H ( θ ) R − 1 A ( θ ) λ ⃗ g = A H ( θ ) R − 1 A ( θ ) λ ⃗ λ ⃗ = ( A H ( θ ) R − 1 A ( θ ) ) − 1 g \begin{array}{l} A^{H}(\theta) w_{o p t}=A^{H}(\theta) R^{-1} A(\theta) \vec{\lambda} \\ g=A^{H}(\theta) R^{-1} A(\theta) \vec{\lambda} \\ \vec{\lambda}=\left(A^{H}(\theta) R^{-1} A(\theta)\right)^{-1} g \end{array} AH(θ)wopt=AH(θ)R1A(θ)λ g=AH(θ)R1A(θ)λ λ =(AH(θ)R1A(θ))1g
λ \lambda λ带入 w o p t w_{opt} wopt
w o p t = R − 1 A ( θ ) ( A H ( θ ) R − 1 A ( θ ) ) − 1 g w_{o p t}=R^{-1} A(\theta)\left(A^{H}(\theta) R^{-1} A(\theta)\right)^{-1} g wopt=R1A(θ)(AH(θ)R1A(θ))1g
推导完毕。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值