柯西收敛定理的证明

柯西收敛原理


基本数列的定义

如果数列 { x n } \{x_n\} {xn} 具有以下特性:对于任意给定的 ε > 0 \varepsilon>0 ε>0,存在正整数 N N N,使得当 n , m > N n,m>N n,m>N 时,成立

∣ x n − x m ∣ < ε |x_n-x_m|<\varepsilon xnxm<ε

则称数列 { x n } \{x_n\} {xn} 是一个基本数列。


柯西收敛原理

数列 { x n } \{x_n\} {xn} 收敛的充要条件是数列 { x n } \{x_n\} {xn} 是基本数列


柯西收敛原理的证明

先证明必要性

{ x n } \{x_n\} {xn} 收敛于 a a a ,按照定义, ∀ ε > 0 , ∃ N , ∀ n , m > N \forall \varepsilon>0,\exist N,\forall n,m>N ε>0,N,n,m>N:

∣ x n − a ∣ < ε / 2 , ∣ x m − a ∣ < ε / 2 , |x_n-a|<\varepsilon/2,|x_m-a|<\varepsilon/2, xna<ε/2,xma<ε/2,

所以

∣ x n − x m ∣ ⩽ ∣ x m − a ∣ + ∣ x n − a ∣ < ε |x_n-x_m|\leqslant|x_m-a|+|x_n-a|<\varepsilon xnxmxma+xna<ε

所以 { x n } \{x_n\} {xn} 是基本数列.

再证明充分性:

先证明 { x n } \{x_n\} {xn} 有界。

对于 ε = 1 , ∃ N , ∀ n > N \varepsilon=1,\exist N,\forall n>N ε=1,N,n>N

∣ x n − x N + 1 ∣ < ϵ = 1 |x_n-x_{N+1}|<\epsilon=1 xnxN+1<ϵ=1

令:

M = max ⁡ { ∣ x 1 ∣ , ∣ x 2 ∣ , ⋯   , ∣ x N ∣ , ∣ x N + 1 ∣ + 1 } M=\max\{|x_1|,|x_2|,\cdots,|x_N|,|x_{N+1}|+1\} M=max{x1,x2,,xN,xN+1+1}

那么, ∣ x n ∣ < M , n = 1 , 2 , 3 , ⋯ |x_n|<M,n=1,2,3,\cdots xn<M,n=1,2,3,,所以 ∣ x n ∣ |x_n| xn 有界。

根据 BW(bolzano-Weierstrass) 定理, ∣ x n ∣ |x_n| xn 存在收敛子列, ∣ x n k ∣ |x_{n_k}| xnk

{ x n k } \{x_{n_k}\} {xnk} 收敛于 ξ \xi ξ,则 ∀ ϵ , ∃ k , ∀ p , q > k \forall\epsilon,\exist k,\forall p,q>k ϵ,k,p,q>k

因为 { x n } \{x_n\} {xn} 是基本数列,所以 ∀ ε > 0. ∃ N , ∀ n , m > N \forall \varepsilon>0.\exist N,\forall n,m>N ε>0.N,n,m>N

∣ x n − x m ∣ < ϵ 2 |x_n-x_m|<\frac{\epsilon}{2} xnxm<2ϵ

在上式中取 x m = x n k x_m=x_{n_k} xm=xnk ,其中 k k k 充分大,满足 n k > N n_k>N nk>N ,并且令 k → ∞ k\to\infty k,于是得到

∣ x n − ξ ∣ ⩽ ϵ 2 < ϵ |x_n-\xi|\leqslant \frac{\epsilon}{2}<\epsilon xnξ2ϵ<ϵ

所以 { x n } \{x_n\} {xn} 收敛


2021年9月25日18:24:20

  • 15
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值