【时间序列分析】07. 平稳序列的偏相关系数

平稳序列的偏相关系数

Yule-Walker 系数

在描述 Yule-Walker 方程的向量形式时,我们将自回归系数向量定义如下:
a n = ( a n , 1 , a n , 2 , ⋯   , a n , n ) T ≜ ( a 1 , a 2 , ⋯   , a p , 0 , 0 , ⋯   , 0 ) T   ,      n ≥ p . \boldsymbol{a}_n=(a_{n,1},a_{n,2},\cdots,a_{n,n})^{\rm T} \triangleq(a_1,a_2,\cdots,a_p,0,0,\cdots,0)^{\rm T} \ , \ \ \ \ n\geq p. an=(an,1,an,2,,an,n)T(a1,a2,,ap,0,0,,0)T ,    np.
这一形式和偏相关系数有关,现在对这一定义进行更深的探讨。

{ γ k } \{\gamma_k\} { γk} Γ n \boldsymbol\Gamma_n Γn 分别为平稳序列 { X t } \{X_t\} { Xt} 的自协方差函数和 n n n 阶自协方差矩阵, γ n \boldsymbol\gamma_n γn n n n 阶自协方差向量,回顾定义如下:
Γ n = [ γ 0 γ 1 ⋯ γ n − 1 γ 1 γ 0 ⋯ γ n − 2 ⋮ ⋮ ⋮ γ n − 1 γ n − 2 ⋯ γ 0 ] ,          γ n = [ γ 1 γ 2 ⋮ γ n ] . \boldsymbol\Gamma_n=\left[ \begin{array}{cccc} \gamma_0 & \gamma_1 & \cdots & \gamma_{n-1} \\ \gamma_1 & \gamma_0 & \cdots & \gamma_{n-2} \\ \vdots & \vdots & & \vdots \\ \gamma_{n-1} & \gamma_{n-2} & \cdots & \gamma_0 \\ \end{array} \right], \ \ \ \ \ \ \ \ \boldsymbol\gamma_n=\left[ \begin{array}{cccc} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_n \\ \end{array} \right]. Γn=γ0γ1γn1γ1γ0γn2γn1γn2γ0,        γn=γ1γ2γn.
回顾 { γ k } \{\gamma_k\} { γk} n n n 阶 Yule-Walker 方程为
Γ n a n = γ n . \boldsymbol\Gamma_n\boldsymbol{a}_n=\boldsymbol\gamma_n. Γnan=γn.
在这里我们将 a n = ( a n , 1 , a n , 2 , ⋯   , a n , n ) T \boldsymbol{a}_n=(a_{n,1},a_{n,2},\cdots,a_{n,n})^{\rm T} an=(an,1,an,2,,an,n)T 称为 { γ k } \{\gamma_k\} { γk} n n n 阶 Yule-Walker 系数。

Γ n \boldsymbol\Gamma_n Γn 正定时, a n \boldsymbol{a}_n an γ 0 , γ 1 , ⋯   , γ n \gamma_0,\gamma_1,\cdots,\gamma_n γ0,γ1,,γn 唯一决定。

最佳线性预测

首先我们描述一个平稳序列 { X t } \{X_t\} { Xt} 的线性预测问题:设 { X t } \{X_t\} { Xt} 是零均值平稳序列,考虑用 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn X n + 1 X_{n+1} Xn+1 进行线性预测。即用 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 的线性组合对 X n + 1 X_{n+1} Xn+1 进行预测,写成向量形式为
∑ j = 1 n b n , j X n − j + 1 = b n T X n \sum_{j=1}^nb_{n,j}X_{n-j+1}=\boldsymbol{b}_n^{\rm T}\boldsymbol{X}_n j=1nbn,jXnj+1=bnTXn
其中 X n = ( X n , X n − 1 , ⋯   , X 1 ) T \boldsymbol{X}_n=(X_n,X_{n-1},\cdots,X_1)^{\rm T} Xn=(Xn,Xn1,,X1)T b n = ( b n , 1 , b n , 2 , ⋯   , b n , n ) T \boldsymbol{b}_n=(b_{n,1},b_{n,2},\cdots,b_{n,n})^{\rm T} bn=(bn,1,bn,2

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值