【时间序列分析】08. AR(p)序列举例

A R ( p ) {\rm AR}(p) AR(p) 序列举例

A R ( 1 ) {\rm AR}(1) AR(1) 模型

模型设定:
X t = a X t − 1 + ε t   ,      t ∈ Z   , X_t=aX_{t-1}+\varepsilon_t \ , \ \ \ \ t\in\Z\ , Xt=aXt1+εt ,    tZ ,

ε t ∼ W N ( 0 ,   σ 2 )   . \varepsilon_t\sim{\rm WN}(0,\,\sigma^2)\ . εtWN(0,σ2) .

特征多项式: A ( z ) = 1 − a z A(z)=1-az A(z)=1az

最小相位条件: ∣ a ∣ < 1 |a|<1 a<1

平稳解:
X t = ∑ j = 0 ∞ a j ε t − j   , t ∈ Z . X_t=\sum_{j=0}^\infty a^j\varepsilon_{t-j}\ ,t\in\Z. Xt=j=0ajεtj ,tZ.
自协方差函数和自相关系数:
γ 0 = σ 2 ∑ j = 0 ∞ a 2 j = σ 2 1 − a 2 . \gamma_0=\sigma^2\sum_{j=0}^\infty a^{2j}=\frac{\sigma^2}{1-a^2}. γ0=σ2j=0a2j=1a2σ2.

γ k = a γ k − 1 = a 2 γ k − 2 = ⋯ = a k γ 0 . \gamma_k=a\gamma_{k-1}=a^2\gamma_{k-2}=\cdots=a^k\gamma_0. γk=aγk1=a2γk2==akγ0.

ρ k = γ k γ 0 = a k . \rho_k=\frac{\gamma_k}{\gamma_0}=a^k. ρk=γ0γk=ak.

谱密度:
f ( λ ) = σ 2 2 π 1 ∣ A ( e i λ ) ∣ 2 = σ 2 2 π 1 ∣ 1 − a e i λ ∣ 2 = σ 2 2 π 1 ∣ 1 + a 2 − 2 a cos ⁡ λ ∣   ,      λ ∈ [ − π ,   π ] . f(\lambda)=\frac{\sigma^2}{2\pi}\frac{1}{\left|A(e^{i\lambda})\right|^2}=\frac{\sigma^2}{2\pi}\frac{1}{\left|1-ae^{i\lambda}\right|^2}=\frac{\sigma^2}{2\pi}\frac{1}{\left|1+a^2-2a\cos\lambda\right|} \ , \ \ \ \ \lambda\in[-\pi,\,\pi]. f(λ)=2πσ2A(eiλ)21=2πσ2

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值