【时间序列分析】08.AR(p)序列的相关性质

八、 A R ( p ) {\rm AR}(p) AR(p)序列与其自协方差函数

1. A R ( p ) {\rm AR}(p) AR(p)序列

之前我们给出过 A R ( p ) {\rm AR}(p) AR(p)序列的定义:满足 A R ( p ) {\rm AR}(p) AR(p)模型的平稳时间序列。由于 A R ( p ) {\rm AR}(p) AR(p)序列的平稳解是唯一的,而且是平稳序列,我们就可以对它的性质进行进一步的讨论。

A R ( p ) {\rm AR}(p) AR(p)序列表现形式为 X t = ∑ j = 0 ∞ ψ j ε t − j X_t=\sum\limits_{j=0}^\infty \psi_j\varepsilon_{t-j} Xt=j=0ψjεtj,是一个单边白噪声无穷滑动和,所以是零均值的,自协方差函数为
γ k = σ 2 ∑ j = 0 ∞ ψ j ψ j + k , k ≥ 0. D X t = γ 0 = σ 2 ∑ j = 0 ∞ ψ j 2 . \gamma_k=\sigma^2\sum_{j=0}^\infty \psi_j\psi_{j+k},\quad k\ge0.\\ {\rm D}X_t=\gamma_0=\sigma^2\sum_{j=0}^\infty \psi_j^2. γk=σ2j=0ψjψj+k,k0.DXt=γ0=σ2j=0ψj2.
在第二篇笔记中,我们提到无穷滑动和的自协方差函数是收敛于0的,特别对 A R ( p ) {\rm AR}(p) AR(p)序列,它的自协方差函数是负指数阶收敛于0的,即
∣ γ k ∣ ≤ σ 2 ( ∑ j = 0 ∞ ψ j 2 ) 1 / 2 ( ∑ j = 0 ∞ ψ j + k 2 ) 1 / 2 ≤ c 0 ( ∑ j = k ∞ ρ − 2 j ) 1 / 2 ≤ c 1 ρ − k . |\gamma_k|\le \sigma^2\left(\sum_{j=0}^\infty \psi_j^2 \right)^{1/2}\left(\sum_{j=0}^\infty\psi_{j+k}^2 \right)^{1/2}\le c_0\left(\sum_{j=k}^\infty \rho^{-2j} \right)^{1/2}\le c_1\rho^{-k}. γkσ2(j=0ψj2)1/2(j=0ψj+k2)1/2c0j=kρ2j1/2c1ρk.
所以,与 ψ j \psi_j ψj一样, ∣ γ k ∣ |\gamma_k| γk也会很快收敛到0,并且 min ⁡ j ρ j \min\limits_j\rho_j jminρj越大,收敛速度越快,也就是 X t , X t + k X_t,X_{t+k} Xt,Xt+k的相关度越低,这被称为时间序列的短记忆性

2.Yule-Walker方程

在介绍了 A R ( p ) {\rm AR}(p) AR(p)序列的自协方差函数与相关性质后,我们要将自协方差函数序列与自相关系数联系在一起,就是这里要说的Yule-Walker方程。Yule-Walker方程的表现形式很简单:
A ( B ) γ k = σ 2 ψ − k . A(\mathscr B)\gamma_k=\sigma^2\psi_{-k}. A(B)γk=σ2ψk.
接下来,对这个方程予以证明,并提出几个不同的形式。

首先,我们知道 X t = a 1 X t − 1 + ⋯ + a p X t − p + ε t X_t=a_1X_{t-1}+\cdots+a_pX_{t-p}+\varepsilon_t Xt=a1Xt1++apXtp+εt,如果将它列成向量或矩阵的形式,则有
[ X t X t + 1 ⋮ X t + p − 1 ] = [ X t − 1 X t − 2 ⋯ X t − p X t X t − 1 ⋯ X t + 1 − p ⋮ ⋮ ⋮ X t + p − 2 X t + p − 3 ⋯ X t − 1 ] [ a 1 a 2 ⋮ a p ] + [ ε t ε t + 1 ⋮ ε t + p − 1 ] . \begin{bmatrix} X_t\\X_{t+1}\\\vdots\\X_{t+p-1} \end{bmatrix}= \begin{bmatrix} X_{t-1}&X_{t-2}&\cdots&X_{t-p}\\ X_{t}&X_{t-1}&\cdots&X_{t+1-p}\\ \vdots&\vdots&&\vdots\\ X_{t+p-2}&X_{t+p-3}&\cdots&X_{t-1} \end{bmatrix}\begin{bmatrix} a_1\\a_2\\\vdots\\a_p \end{bmatrix}+\begin{bmatrix} \varepsilon_t\\\varepsilon_{t+1}\\\vdots\\\varepsilon_{t+p-1} \end{bmatrix}. XtXt+1Xt+p1=Xt1XtXt+p2Xt2Xt1Xt+p3XtpXt+1pXt1a1a2ap+εtεt+1εt+p1.
这是一个 p p p维向量等式,但我们现在要将其向任意更高的维度发展,这对我们以后的研究有好处。所以,我们令 a n = ( a 1 , ⋯   , a p , 0 , ⋯   , 0 ) n ′ \boldsymbol a_n=(a_1,\cdots,a_p,0,\cdots,0)_n' an=(a1,,ap,0,,0)n,就可以自然地将以上的式子扩展成高维的。如果在等式两边同时乘以 X t − 1 X_{t-1} Xt1并取期望,就得到一个重要的方程:
γ n = Γ n a n , n ≥ p . \boldsymbol \gamma_n=\Gamma_n\boldsymbol a_n,\quad n\ge p. γn=Γnan,np.
这里 Γ n \Gamma_n Γn是自协方差矩阵, γ n = ( γ 1 , ⋯   , γ n ) \boldsymbol \gamma_n=(\gamma_1,\cdots,\gamma_n) γn=(γ1,,γn)。从这个式子出发,我们可以得到任何 k > 0 k>0 k>0时的自协方差函数递推关系(因为 γ n \boldsymbol \gamma_n γn的下标从1开始):
γ k = a 1 γ k − 1 + ⋯ + a p γ k − p , k > 0. \gamma_k=a_1\gamma_{k-1}+\cdots+a_p\gamma_{k-p},\quad k>0. γk=a1γk1++apγkp,k>0.
也就是对于 k > 1 k>1 k>1,有 A ( B ) γ k = 0 A(\mathscr B)\gamma_k=0 A(B)γk=0,这个式子与Wold系数的 A ( B ) ψ j = 0 A(\mathscr B)\psi_j=0 A(B)ψj=0很相似,不同的是,在定义了 ψ j , j ≤ 0 \psi_j,j\le0 ψj,j0的情况下,Wold系数没有下标的限制,而自协方差只能对正值下标使用。那么,对于 γ 0 \gamma_0 γ0,它也满足一定的等式如下:
γ 0 = E X t 2 = E ( ∑ j = 1 p a j X t − j + ε t ) 2 = E ( ∑ j = 1 p a j X t − j ) 2 + E ε t 2 = E ( ∑ j = 1 n a j X t − j ) 2 + E ε t 2 = ∑ j = 1 n ∑ k = 1 n a j a k E X j X k + σ 2 = a n ′ Γ n a n + σ 2 = γ n ′ a n + σ 2 . \begin{aligned} \gamma_0=&{\rm E}X_t^2={\rm E}\left(\sum_{j=1}^p a_jX_{t-j}+\varepsilon_t \right)^2\\ =&{\rm E}\left(\sum_{j=1}^pa_jX_{t-j} \right)^2+{\rm E}\varepsilon_t^2\\ =&{\rm E}\left(\sum_{j=1}^na_jX_{t-j} \right)^2+{\rm E}\varepsilon_t^2\\ =&\sum_{j=1}^n\sum_{k=1}^na_ja_k{\rm E}X_jX_k+\sigma^2\\ =&\boldsymbol a_n'\Gamma_n\boldsymbol a_n+\sigma^2\\ =&\boldsymbol \gamma_n'\boldsymbol a_n+\sigma^2. \end{aligned} γ0======EXt2=E(j=1pajXtj+εt)2E(j=1pajXtj)2+Eεt2E(j=1najXtj)2+Eεt2j=1nk=1najakEXjXk+σ2anΓnan+σ2γnan+σ2.
这里,第一行到第二行是平方展开,并且 E X t − j ε t = 0 {\rm E}X_{t-j}\varepsilon_t=0 EXtjεt=0,因为 A R ( p ) {\rm AR}(p) AR(p)序列与未来的白噪声无关;第二行到第三行将求和上标从 p p p扩展到 n n n,方便后续向 Γ n , a n \Gamma_n,\boldsymbol a_n Γn,an转化;第五行到第六行中,代入了我们得到的等式 γ n = Γ n a n \boldsymbol \gamma_n=\Gamma_n\boldsymbol a_n γn=Γnan

这样,我们就得到了自协方差函数与自回归系数、自协方差矩阵的关系:
γ n = Γ n a n , γ 0 = γ n ′ a n + σ 2 . \boldsymbol \gamma_n=\Gamma_n\boldsymbol a_n,\quad \gamma_0=\boldsymbol \gamma_n'\boldsymbol a_n+\sigma^2. γn=Γnan,γ0=γnan+σ2.
这就是Yule-Walker方程对 k ≥ 0 k\ge 0 k0的表现形式,事实上,这是拥有更广泛应用的形式,因为在实际使用时,我们会比较容易获得样本的自协方差函数,而自回归系数、白噪声方差往往需要根据样本估计,上面的两个式子提供了根据自协方差函数计算自回归系数的方式。至于为什么要将这个式子不限定于 p p p维,而要向任意高维 n n n推广,在以后会有更深刻的体会。

而结合Wold系数,Yule-Walker方程可以写成更为通用的形式:
A ( B ) γ k = σ 2 ψ − k , k ∈ Z . A(\mathscr B)\gamma_k=\sigma^2\psi_{-k},\quad k\in\Z. A(B)γk=σ2ψk,kZ.
这个式子直接去除了 γ k \gamma_k γk的下标限制,对 k > 0 k>0 k>0的情况,已经在前面得到证明,而 k = 0 k=0 k=0时也有
γ 0 = γ n ′ a n + σ 2 = a 1 γ 1 + ⋯ + a p γ p + σ 2 = a 1 γ − 1 + ⋯ + a p γ − p + σ 2 . \gamma_0=\boldsymbol \gamma_n'\boldsymbol a_n+\sigma^2=a_1\gamma_1+\cdots+a_p\gamma_p+\sigma^2=a_1\gamma_{-1}+\cdots+a_p\gamma_{-p}+\sigma^2. γ0=γnan+σ2=a1γ1++apγp+σ2=a1γ1++apγp+σ2.
现在对 k < 0 k<0 k<0的情况证明,有
A ( B ) γ k = γ k − ( a 1 γ k − 1 + ⋯ + a p γ k − p ) = E [ X t − k ( X t − ∑ j = 1 p a j X t − j ) ] = E [ X t − k ε t ] = E ( ∑ j = 0 ∞ ψ j ε t − k − j ε t ) = σ 2 ψ − k . \begin{aligned} A(\mathscr B)\gamma_k=&\gamma_k-(a_1\gamma_{k-1}+\cdots+a_p\gamma_{k-p})\\ =&{\rm E}\left[X_{t-k}\left(X_t-\sum_{j=1}^pa_jX_{t-j} \right) \right]\\ =&{\rm E}[X_{t-k}\varepsilon_t]\\ =&{\rm E}\left(\sum_{j=0}^\infty \psi_j\varepsilon_{t-k-j} \varepsilon_t\right)\\ =&\sigma^2\psi_{-k}. \end{aligned} A(B)γk=====γk(a1γk1++apγkp)E[Xtk(Xtj=1pajXtj)]E[Xtkεt]E(j=0ψjεtkjεt)σ2ψk.
这就证明了 A ( B ) γ k = σ 2 ψ − k A(\mathscr B)\gamma_k=\sigma^2\psi_{-k} A(B)γk=σ2ψk

3.自协方差函数的正定性

由于 A R ( p ) {\rm AR}(p) AR(p)模型的平稳解唯一,仅由自回归系数和方差就能唯一确定,并得到平稳解的自协方差函数列。但是反过来,我们能否根据自协方差函数列推断自回归系数和方差呢?还是从Yule-Walker方程入手:
γ n = Γ n a n , γ 0 = γ n ′ a n + σ 2 . \boldsymbol \gamma_n=\Gamma_n\boldsymbol a_n,\quad \gamma_0=\boldsymbol \gamma_n'\boldsymbol a_n+\sigma^2. γn=Γnan,γ0=γnan+σ2.
因为 a n \boldsymbol a_n an p p p位置之后的元素都是0,所以取 n = p n=p n=p就足够我们计算所有的自回归系数了,并且如果 Γ p \Gamma_p Γp可逆的,也就是 Γ p \Gamma_p Γp不退化,结合自身非负定性即 Γ p \Gamma_p Γp如果是正定的,就得到
a p = Γ p − 1 γ p , σ 2 = γ 0 − γ p ′ a p . \boldsymbol a_p=\Gamma_p^{-1}\boldsymbol \gamma_p,\quad \sigma^2=\gamma_0-\boldsymbol \gamma_p'\boldsymbol a_p. ap=Γp1γp,σ2=γ0γpap.
所以,一切问题都来到了 Γ p \Gamma_p Γp是否是正定矩阵上。幸好,实际生活中的许多平稳序列的自协方差矩阵都是正定的,特别是 A R ( p ) {\rm AR}(p) AR(p)序列的自协方差矩阵总是正定的。接下来提出两个定理:

自协方差矩阵正定定理:对于平稳序列 { X t } \{X_t\} {Xt},其 n n n阶自协方差矩阵为 Γ n \Gamma_n Γn,则

  1. 如果 { X t } \{X_t\} {Xt}的谱密度 f ( λ ) f(\lambda) f(λ)存在,则对任何 n ≥ 1 n\ge1 n1 Γ n \Gamma_n Γn正定;
  2. 如果当 k → ∞ k\to \infty k γ k → 0 \gamma_k\to 0 γk0,则对任何 n ≥ 1 n\ge1 n1 Γ n \Gamma_n Γn正定。

特别对于 A R ( p ) {\rm AR}(p) AR(p)序列,其自协方差函数以负指数阶收敛于0,且谱密度存在(下一篇中将给出谱密度的形式),所以其自协方差矩阵总是正定的。

以下对这两种情况分别给出证明。

对于谱密度存在的情况,对于任何 n n n维实向量 b = ( b 1 , ⋯   , b n ) ′ ≠ 0 \boldsymbol b=(b_1,\cdots,b_n)'\ne 0 b=(b1,,bn)=0,函数 ∑ k = 1 n b k e i k λ \sum_{k=1}^nb_ke^{{\rm i}k\lambda} k=1nbkeikλ最多只有 n n n个零点,且 γ 0 = ∫ − π π f ( λ ) d λ > 0 \gamma_0=\int_{-\pi}^\pi f(\lambda){\rm d}\lambda >0 γ0=ππf(λ)dλ>0,所以
b ′ Γ n b = ∑ j = 1 n ∑ k = 1 n b j b k γ k − j = ∑ j = 1 n ∑ k = 1 n ∫ − π π b k b j e i ( k − j ) λ f ( λ ) d λ = ∫ − π π ∑ j = 1 n ∑ k = 1 n b k e i k λ b j e − i k λ f ( λ ) d λ = ∫ − π π ∣ ∑ j = 1 n b j e i j λ ∣ 2 f ( λ ) d λ > 0. \begin{aligned} \boldsymbol b'\Gamma_n\boldsymbol b=&\sum_{j=1}^n\sum_{k=1}^n b_jb_k\gamma_{k-j}\\ =&\sum_{j=1}^n\sum_{k=1}^n\int_{-\pi}^\pi b_kb_je^{{\rm i}(k-j)\lambda}f(\lambda){\rm d}\lambda\\ =&\int_{-\pi}^\pi \sum_{j=1}^n\sum_{k=1}^nb_ke^{{\rm i}k\lambda}b_je^{-{\rm i}k\lambda}f(\lambda){\rm d}\lambda\\ =&\int_{-\pi}^\pi\left|\sum_{j=1}^nb_je^{{\rm i}j\lambda} \right|^2f(\lambda ){\rm d}\lambda>0. \end{aligned} bΓnb====j=1nk=1nbjbkγkjj=1nk=1nππbkbjei(kj)λf(λ)dλππj=1nk=1nbkeikλbjeikλf(λ)dλππj=1nbjeijλ2f(λ)dλ>0.
最后一个不等号成立,是因为前半部分 0 ∣ ∑ j = 1 n b j e i j λ ∣ 2 0|\sum_{j=1}^nb_je^{{\rm i}j\lambda} |^2 0j=1nbjeijλ2只在有限个点处为0,其他部分为正;后半部分 f ( λ ) f(\lambda) f(λ)因为 ∫ − π π f ( λ ) d λ \int_{-\pi}^\pi f(\lambda){\rm d}\lambda ππf(λ)dλ,必定存在一个测度不为0的集合使得 f ( λ ) > 0 f(\lambda)>0 f(λ)>0,所以 b ′ Γ n b > 0 \boldsymbol b'\Gamma_n\boldsymbol b>0 bΓnb>0

第二种情况的证明稍显繁琐,我们想反证法推出矛盾,如果 Γ n \Gamma_n Γn正定但 det ⁡ ( Γ n + 1 ) = 0 \det(\Gamma_{n+1})=0 det(Γn+1)=0 E X t = 0 {\rm E}X_t=0 EXt=0,定义 X n = ( X 1 , ⋯   , X n ) ′ \boldsymbol X_n=(X_1,\cdots,X_n)' Xn=(X1,,Xn),则对任何实向量 b = ( b 1 , ⋯   , b n ) ≠ 0 \boldsymbol b=(b_1,\cdots,b_n)\ne 0 b=(b1,,bn)=0,有
E ( b ′ X n ) 2 = E ( b ′ X n X n ′ b ) = b ′ Γ n b > 0 , {\rm E}(\boldsymbol b'\boldsymbol X_n)^2={\rm E}(\boldsymbol b'\boldsymbol X_n\boldsymbol X_n'\boldsymbol b)=\boldsymbol b'\Gamma_n\boldsymbol b>0, E(bXn)2=E(bXnXnb)=bΓnb>0,
同时存在 a = ( a 1 , ⋯   , a n + 1 ) ′ ≠ 0 \boldsymbol a=(a_1,\cdots,a_{n+1})'\ne0 a=(a1,,an+1)=0,使得 E ( a ′ X n + 1 ) 2 = a ′ Γ n + 1 a = 0 {\rm E}(\boldsymbol a'\boldsymbol X_{n+1})^2=\boldsymbol a'\Gamma_{n+1}\boldsymbol a=0 E(aXn+1)2=aΓn+1a=0,所以
a ′ X n + 1 = a 1 X 1 + ⋯ + a n X n + a n + 1 X n + 1 = 0 , a . s . \boldsymbol a'\boldsymbol X_{n+1}=a_1X_1+\cdots+a_nX_n+a_{n+1}X_{n+1}=0,\quad {\rm a.s.} aXn+1=a1X1++anXn+an+1Xn+1=0,a.s.
并且由于 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn线性无关得知 a n + 1 ≠ 0 a_{n+1}\ne0 an+1=0 X n + 1 X_{n+1} Xn+1可以被 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn线性表示。这样,利用 { X t } \{X_t\} {Xt}的平稳性就得到 ∀ k ≥ 1 , X n + k \forall k\ge1,X_{n+k} k1,Xn+k可以被 X 1 , ⋯   , X n X_1,\cdots,X_{n} X1,,Xn线性表示,即存在实向量 α = ( α 1 , ⋯   , α n ) ′ \boldsymbol \alpha=(\alpha_1,\cdots,\alpha_n)' α=(α1,,αn),使得
X n + k = α ′ X . X_{n+k}=\boldsymbol \alpha'\boldsymbol X. Xn+k=αX.
因为 Γ n \Gamma_n Γn正定对称阵,有 0 < λ 1 ≤ ⋯ ≤ λ n 0<\lambda_1\le \cdots\le \lambda_n 0<λ1λn(正定),并且有正交阵 T T T使得 T Γ n T ′ = d i a g ( λ 1 , ⋯   , λ n ) T\Gamma_nT'={\rm diag}(\lambda_1,\cdots,\lambda_n) TΓnT=diag(λ1,,λn)(对称),于是
γ 0 = E X n + k 2 = E ( α ′ X ) 2 = α ′ Γ n a = ( α ′ T ′ ) ( T Γ n T ′ ) ( T α ) ≥ λ 1 ∣ T α ∣ 2 = λ 1 ∣ α ∣ 2 . \gamma_0={\rm E}X_{n+k}^2={\rm E}(\boldsymbol \alpha'\boldsymbol X)^2=\boldsymbol \alpha'\Gamma_n\boldsymbol a=(\boldsymbol \alpha'T')(T\Gamma_nT')(T\boldsymbol \alpha)\ge \lambda_1|T\boldsymbol \alpha|^2=\lambda_1|\boldsymbol \alpha|^2. γ0=EXn+k2=E(αX)2=αΓna=(αT)(TΓnT)(Tα)λ1Tα2=λ1α2.
得到 0 < ∣ α ∣ ≤ γ 0 / λ 1 0<|\boldsymbol \alpha|\le\sqrt{\gamma_0/\lambda_1} 0<αγ0/λ1 ,这里找到了 α \boldsymbol \alpha α的模的与 n n n无关的上界;另一边又有
γ 0 = E ( a ′ X X n + k ) = a ′ E ( X X n + k ) = a ′ ( γ n + k − 1 , γ n + k − 2 , ⋯   , γ k ) ′ ≤ ∣ a ∣ ( ∑ j = 0 n − 1 γ j + k 2 ) 1 / 2 ≤ ( γ 0 γ 1 ∑ j = 0 n − 1 γ j + k 2 ) 1 / 2 → 0. \begin{aligned} \gamma_0=&{\rm E}(\boldsymbol a'\boldsymbol XX_{n+k})\\ =&\boldsymbol a'{\rm E}(\boldsymbol XX_{n+k})\\ =&\boldsymbol a'(\gamma_{n+k-1},\gamma_{n+k-2},\cdots,\gamma_k)'\\ \le& |\boldsymbol a|\left(\sum_{j=0}^{n-1}\gamma_{j+k}^2 \right)^{1/2}\\ \le&\left(\frac{\gamma_0}{\gamma_1}\sum_{j=0}^{n-1}\gamma_{j+k}^2\right)^{1/2}\to 0. \end{aligned} γ0===E(aXXn+k)aE(XXn+k)a(γn+k1,γn+k2,,γk)a(j=0n1γj+k2)1/2(γ1γ0j=0n1γj+k2)1/20.
这里推出了矛盾。综合以上证明过程,我们通过研究 X 1 , ⋯   , X n , X n + 1 X_1,\cdots,X_n,X_{n+1} X1,,Xn,Xn+1的线性相关性得到了 X n + k X_{n+k} Xn+k可以被 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn线性表示这一结论,再通过 γ 0 \gamma_0 γ0的两种不同展开方式得到了矛盾,最终证明了 Γ n \Gamma_n Γn正定的情况下 Γ n + 1 \Gamma_{n+1} Γn+1一定也是正定的,再结合 γ 0 > 0 \gamma_0>0 γ0>0这一基本事实,得到 Γ n \Gamma_n Γn的正定性对任何 n n n成立。

别忘了我们证明 Γ n \Gamma_n Γn的目的,有了 Γ n \Gamma_n Γn的正定性,就说明 Γ n \Gamma_n Γn是可逆的,于是可以由Yule-Walker方程得到
a p = Γ p − 1 γ p , σ 2 = γ 0 − γ p ′ a p . \boldsymbol a_p=\Gamma_p^{-1}\boldsymbol \gamma_p,\quad \sigma^2=\gamma_0-\boldsymbol \gamma_p'\boldsymbol a_p. ap=Γp1γp,σ2=γ0γpap.
但仍有一个问题:在实际运用中,我们不一定知道 A R ( p ) {\rm AR}(p) AR(p)方程的阶数 p p p,那应该怎么取 p p p才能得到合适的自回归系数个数呢?这是我们之后会讨论到的问题。

回顾总结

  1. A R ( p ) {\rm AR}(p) AR(p)序列是满足 A R ( p ) {\rm AR}(p) AR(p)模型的平稳序列,是一个关于Wold系数 ψ j \psi_j ψj的单边无穷滑动和,故均值为0,自协方差函数为
    γ k = σ 2 ∑ j = 0 ∞ ψ j ψ j + k , k ∈ Z . \gamma_k=\sigma^2\sum_{j=0}^\infty \psi_j\psi_{j+k},\quad k\in\Z. γk=σ2j=0ψjψj+k,kZ.

  2. A R ( p ) {\rm AR}(p) AR(p)序列的自协方差函数 γ k \gamma_k γk以负指数阶收敛到0,即 ∣ γ k ∣ = o ( ρ − k ) |\gamma_k|=o(\rho^{-k}) γk=o(ρk)

  3. Yule-Walker方程联系了自协方差函数与自回归系数、白噪声方差,还可以联系Wold系数,其通式是 A ( B ) γ k = σ 2 ψ − k A(\mathscr B)\gamma_k=\sigma^2\psi_{-k} A(B)γk=σ2ψk

  4. 常用的Yule-Walker方程形式是,对于 a n = ( a 1 , ⋯   , a p , 0 , ⋯   , 0 ) n ′ , γ n = ( γ 1 , ⋯   , γ n ) ′ \boldsymbol a_n=(a_1,\cdots,a_p,0,\cdots,0)_n',\boldsymbol \gamma_n=(\gamma_1,\cdots,\gamma_n)' an=(a1,,ap,0,,0)n,γn=(γ1,,γn),有
    γ n = Γ n a n , γ 0 = γ n ′ a n + σ 2 , n ≥ p . \boldsymbol \gamma_n=\Gamma_n\boldsymbol a_n,\gamma_0=\boldsymbol \gamma_n'\boldsymbol a_n+\sigma^2,\quad n\ge p. γn=Γnan,γ0=γnan+σ2,np.

  5. 对于一般平稳序列,如果其谱密度存在,或者自协方差函数列趋向于0,则其自协方差矩阵是任意阶正定的。

  6. A R ( p ) {\rm AR}(p) AR(p)序列的自协方差矩阵总是正定的,从而在给定 p p p的情况下有
    a p = Γ p − 1 γ p , σ 2 = γ 0 − γ p ′ a p . \boldsymbol a_p=\Gamma_p^{-1}\boldsymbol \gamma_p,\quad \sigma^2=\gamma_0-\boldsymbol \gamma_p'\boldsymbol a_p. ap=Γp1γp,σ2=γ0γpap.
    这一般被用来估计自回归系数与白噪声方差。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值