【时间序列分析】11. 自回归滑动平均模型

本文详细介绍了自回归滑动平均模型ARMA(p,q)的定义、平稳解、可逆性、自相关函数和谱密度以及模型的可识别性。通过Wold系数递推公式和Yule-Walker方程,展示了如何计算和分析ARMA(p,q)序列的性质,并探讨了模型的充分条件。" 100287453,9014547,入侵检测系统(IDS)的测试与评估解析,"['系统安全', '网络安全', '入侵防御']
摘要由CSDN通过智能技术生成

自回归滑动平均模型

A R M A ( p ,   q ) {\rm ARMA}(p,\,q) ARMA(p,q) 模型及其平稳解

为了描述更多的平稳序列,把自回归模型和滑动平均模型结合起来就得到了自回归滑动平均模型,下面给出定义:

{ ε t } ∼ W N ( o ,   σ 2 ) \{\varepsilon_t\}\sim{\rm WN}(o,\,\sigma^2) { εt}WN(o,σ2) ,实系数多项式 A ( z ) A(z) A(z) B ( z ) B(z) B(z) 没有公共根,满足 b 0 = 1 b_0=1 b0=1 a p b q ≠ 0 a_pb_q\neq0 apbq=0
A ( z ) = 1 − ∑ j = 1 p a j z j ≠ 0   ,      ∣ z ∣ ≤ 1   , A(z)=1-\sum_{j=1}^pa_jz^j\neq0 \ , \ \ \ \ |z|\leq1\ , A(z)=1j=1pajzj=0 ,    z1 ,

B ( z ) = ∑ j = 0 q b j z j ≠ 0   ,      ∣ z ∣ < 1   , B(z)=\sum_{j=0}^qb_jz^j\neq0 \ , \ \ \ \ |z|<1 \ , B(z)=j=0qbjzj=0 ,    z<1 ,

定义差分方程
X t = ∑ j = 1 p a j X t − j + ∑ j = 0 q b j ε t − j   ,      t ∈ Z X_t=\sum_{j=1}^pa_jX_{t-j}+\sum_{j=0}^qb_j\varepsilon_{t-j} \ , \ \ \ \ t\in\Z Xt=j=1pajXtj+j=0qbjεtj ,    tZ
是一个自回归滑动平均模型,简称为 A R M A ( p ,   q ) {\rm ARMA}(p,\,q) ARMA(p,q) 模型。

利用推移算子可以将模型改写为
A ( B ) X t = B ( B ) ε t   ,      t ∈ Z . A(\mathscr{B})X_t=B(\mathscr{B})\varepsilon_t \ , \ \ \ \ t\in\Z. A(B)Xt=B(B)εt ,    tZ.
满足此模型的平稳序列被称为 A R M A ( p , q ) {\rm ARMA}(p,q) ARMA(p,q) 序列。

定义 Φ ( z ) = A − 1 ( z ) B ( z ) \Phi(z)=A^{-1}(z)B(z) Φ(z)=A1(z)B(z) ,由于 A ( z ) A(z) A(z) 满足最小相位性条件,所以存在 ρ > 1 \rho>1 ρ>1 ,使得在 { z : ∣ z ∣ ≤ ρ } \{z:|z|\leq\rho\} { z:zρ} 内, Φ ( z ) \Phi(z) Φ(z) 解析,从而有泰勒展开式
Φ ( z ) = A − 1 ( z ) B ( z ) = ∑ j = 0 ∞ ψ j z j   ,      ∣ z ∣ ≤ ρ . \Phi(z)=A^{-1}(z)B(z)=\sum_{j=0}^\infty\psi_jz^j \ , \ \ \ \ |z|\leq\rho . Φ(z)=A1(z)B(z)=j=0ψjzj ,    zρ.
类似地,我们得到 A R M A ( p ,   q ) {\rm ARMA}(p,\,q) ARMA(p,q) 序列的唯一的平稳解:
X t = A − 1 ( B ) B ( B ) ε t = Φ ( B ) ε t = ∑ j = 0 ∞ ψ j ε t − j   ,      t ∈ Z . X_t=A^{-1}(\mathscr{B})B(\mathscr{B})\varepsilon_t=\Phi(\mathscr{B})\varepsilon_t=\sum_{j=0}^\infty \psi_j\varepsilon_{t-j} \ , \ \ \ \ t\in\Z. Xt=A1(B)B(B)εt=Φ(B)εt=j=0ψjεtj ,    tZ.
其中 { ψ j } \{\psi_j\} { ψj} 被称为 { X t } \{X_t\} { Xt} 的 Wold 系数。类似于 A R ( p ) {\rm AR}(p) AR(p) 序列的 Wold 系数, A R M A ( p ,   q ) {\rm ARMA}(p,\,q) ARMA(p,q) 序列也有 Wold 系数递推公式。

a 0 = − 1 a_0=-1 a0=1 ,定义模型参数 a p = ( a 1 , a 2 , ⋯   , a p ) T \boldsymbol{a}_p=(a_1,a_2,\cdots,a_p)^{\rm T} ap=(a1,a2,,ap)T b q = ( b 1 , b 2 , ⋯   , b q ) T \boldsymbol{b}_q=(b_1,b_2,\cdots,b_q)^{\rm T} bq=(b1,b2,,bq)T ,补充定义当 k < 0 k<0 k<0 ψ k = 0 \psi_k=0 ψk=0 。我们可以得到 { ψ j } \{\psi_j\} { ψj} 的递推公式:
ψ j = { 0    , j < 0   , 1    , j = 0   , b j + ∑ k = 1 p a k ψ j − k   , j = 1 , 2 , ⋯   . \psi_j=\left\{ \begin{array}{ll} 0\ \ , &j<0 \ , \\ 1\ \ , &j=0 \ , \\ b_j+\displaystyle\sum_{k=1}^pa_k\psi_{j-k} \ , & j=1,2,\cdots \ . \end{array} \right. ψj=0  ,1  ,bj+k=1pakψjk ,j<0 ,j=0 ,j=1,2, .
推导过程如下:
A ( z ) Φ ( z ) = ∑ k = 0 p ( − a k ) z k ∑ l = 0 ∞ ψ l z l = ∑ l = 0 ∞ ∑ k = 0 p ( − a k ) ψ l z l + k = j = l + k ∑ j = 0 ∞ ∑ k = 0 p ( − a k ) ψ j − k z j = B ( z ) = ∑ j = 0 q b j z j   , \begin{aligned} A(z)\Phi(z) &=\sum_{k=0}^p(-a_k)z^k\sum_{l=0}^\infty\psi_lz^l \\ &=\sum_{l=0}^\infty\sum_{k=0}^p(-a_k)\psi_lz^{l+k} \\ &\xlongequal{j=l+k}\sum_{j=0}^\infty\sum_{k=0}^p(-a_k)\psi_{j-k}z^{j}\\ &=B(z)=\sum_{j=0}^qb_jz^j \ , \end{aligned} A(z)Φ(z)=k=0p(ak)zkl=0ψlzl=l=0k=0p(ak)ψlzl+kj=l+k j=0k=0p(ak)ψjkzj=B(z)=j=0qbjzj ,
系数对应:
∑ k = 0 p ( − a k ) ψ j − k = b j   ,      j ≥ 1   , \sum_{k=0}^p(-a_k)\psi_{j-k}=b_j \ , \ \ \ \ j\geq1 \ , k=0p(ak)ψjk=bj ,    j1 ,

ψ j = ∑ k = 1 p a k ψ j − k + b j   ,      j ≥ 1. \psi_j=\sum_{k=1}^pa_k\psi_{j-k}+b_j \ , \ \ \ \ j\geq1. ψj=k=1pakψjk+bj ,    j1.

A R M A ( p ,   q ) {\rm ARMA}(p,\,q) ARMA(p,q) 序列的可逆性

在之前 A R M A {\rm ARMA} ARMA 的模型设定和 Wold 系数的定义中,我们只要求 A ( z ) A(z) A(z) 满足最小相位性,
A ( z ) = 1 − ∑ j = 1 p a j z j ≠ 0   ,      ∣ z ∣ ≤ 1   , A(z)=1-\sum_{j=1}^pa_jz^j\neq0 \ , \ \ \ \ |z|\leq1\ , A(z)=1j=1pajzj=0 ,    z1 ,
而对于 B ( z ) B(z) B(z) 我们只要求根不在单位圆的内部。类似

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值