【大模型-- LoRA微调原理及代码演示】

LoRA微调原理及流程代码示例

Lora的原理及流程

LoRA(Layerwise Relevance Analysis,层次化相关性分析)是一种参数高效微调(PEFT)方法,它的原理基于分析和调整模型中的参数,以便在不需要微调所有参数的情况下,有效地适应特定的下游任务。LoRA的核心思想是通过分析模型的中间层(特别是顶部的层)来确定哪些参数对于特定任务是最重要的,然后仅仅微调这些参数,而不是整个模型。这种方法显著降低了计算和存储成本,同时保持了模型性能。

LoRA的工作流程如下:

1、分析模型的中间层:LoRA首先通过分析模型的中间层(特别是顶部的层)来确定哪些参数对于特定任务是最重要的。这通常通过计算每个参数与任务性能之间的相关性来实现。

2、选择重要参数:基于相关性分析,LoRA选择出对于特定任务最重要的参数。这些参数通常是模型中间层的权重和偏置。

3、微调选定参数:仅微调选定的参数,而不是整个模型。这样做的好处是,只需要训练一小部分参数,大大降低了计算和存储成本。

4、训练和评估:在选定的参数上进行训练,并评估模型在下游任务上的性能。通过这种方式,LoRA能够在不需要微调所有参数的情况下,有效地适应特定的下游任务。

LoRA的优点在于其参数高效性和适应性。通过仅微调模型中最重要的参数,LoRA能够在保持高性能的同时,显著降低模型训练和推理的计算和存储成本。这使得LoRA成为一种非常有效的方法,用于在大型预训练模型上进行高效的微调,特别是在资源有限的情况下。

流程代码示例

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from transformers import AutoModel, AutoTokenizer

# 1. 加载预训练模型和分词器
model_name = 'bert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)

# 2. 分析模型的中间层
# 这里我们假设我们已经有了一个方法来分析模型的中间层,并确定了哪些参数是最重要的
# 这个过程通常涉及到计算每个参数与任务性能之间的相关性
# 假设我们已经确定了需要微调的参数

# 3. 选择重要参数
# 假设我们已经确定了需要微调的参数,这里我们只选择模型的顶部层的参数
# 在实际应用中,这可能涉及到更复杂的逻辑来确定哪些参数是最重要的
selected_params = [param for name, param in model.named_parameters() if 'layer.11' in name]

# 4. 微调选定参数
# 创建一个新的优化器,只包含我们选定的参数
optimizer = optim.Adam(selected_params, lr=1e-5)

# 假设我们有一个数据加载器和一个损失函数
data_loader = DataLoader(...)
loss_fn = nn.CrossEntropyLoss()

# 训练循环
for epoch in range(num_epochs):
    for batch in data_loader:
        inputs, labels = batch
        outputs = model(inputs)
        loss = loss_fn(outputs, labels)
        
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

# 5. 评估模型
# 在这里,我们可以使用验证集或测试集来评估模型的性能

这个示例代码展示了LoRA的基本工作流程,包括模型分析、参数选择、微调和评估。请注意,实际的LoRA实现可能会更复杂,并且可能需要根据具体的模型和任务进行调整。在实际应用中,确定哪些参数是最重要的,以及如何有效地微调这些参数,是LoRA的关键部分。

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
LoRA(Large-scale Reinforcement Learning from Image Pixels with Latent Actions)是一种用于微调大型模型的方法,它结合了强化学习和图像像素级别的训练。LoRA的目标是通过观察环境中的图像像素,并根据这些像素采取相应的行动来学习一个能够解决复杂任务的模型。 具体来说,LoRA使用了一个基于像素的强化学习框架,其中模型通过观察环境中的图像像素来学习如何采取最佳行动。这种方法的一个关键特点是,模型不需要任何先验知识或手工设计的特征,而是直接从原始像素数据中学习。 LoRA的训练过程包括两个阶段:预训练和微调。在预训练阶段,使用自编码器来学习图像的表示。自编码器是一种无监督学习方法,它通过将输入图像压缩成低维编码,然后再将编码解压缩为重构图像。通过这种方式,自编码器可以学习到图像的有用特征。 在微调阶段,使用强化学习算法(如Proximal Policy Optimization)来优化模型的策略。模型通过观察环境中的图像像素,并根据当前的状态选择最佳的行动。通过与环境进行交互并根据奖励信号进行反馈,模型逐渐优化其策略,以实现更好的性能。 LoRA的优势在于它能够处理高维度的原始输入数据,并且不需要手工设计的特征。通过使用像素级别的训练,LoRA可以学习到更丰富和复杂的特征表示,从而提高模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值