CrossGNN Confronting Noisy Multivariate Time Series Via Cross Interaction Refinement 论文解读

CrossGNN Confronting Noisy Multivariate Time Series Via Cross Interaction Refinement 论文解读

title: Confronting Noisy Multivariate Time Series Via Cross Interaction Refinement 【用交叉作用细化方法对抗多变量时间序列的噪声

背景词汇解释

  • 时间波动:某一变量随着时间的变化而变化,这种波动可能是由于有一定规律的特征所影响,也有可能是收到噪声的影响而波动。
  • 同质性和异质性:
    • 同质性:某个系统、群体或数据集中,个体或元素之间在某个方面相似或具有相同的性质、特征或状态
    • 异质性:所考虑的不同变量之间存在差异或多样性。这种异质性可以表现为多个方面,包括变量类型、度量尺度、分布特征等

问题引入

  • 我们发现,现有方法**无法很好地处理时间波动和变量之间的异质性问题**
  • 为解决上述问题,我们提出了 CrossGNN 模型,这是一种**线性复杂 GNN 模型**,用于完善 MTS 的跨尺度跨变量交互作用。
    • 处理时间维度上的意外噪声:
      利用自适应多尺度标识符(AMSI)来构建具有较低噪声的多尺度时间序列
    • 提取趋势更清晰、噪声更弱的尺度;充分利用跨尺度变量的同质性和异质性
      提出了一种跨尺度 GNN
    • 复杂度:
      线性时间复杂度
  • 基于Transformer的自注意力模型的缺陷:
    • 自注意力机制的模型太过于依赖上下文的信息,导致了只要有噪声扰动
    • 受到噪声影响的点,反而被分到了高的注意力分数,从而导致虚假的跨时间相关性
    • 趋势更清晰、噪声更弱的刻度将被赋予更多的边缘权重
  • 由于噪声干扰的影响,提取不同尺度的变量的交互作用非常困难
  • 变量之间的同质和异质关系没有利用好

请添加图片描述

因此:关键问题是:

  • 如何捕捉对意外输入噪声不敏感的跨尺度交互作用:就像在电视上看清晰画面,我们希望找到一种方法,不受电视信号突然干扰(噪声)的影响,仍然能够理解不同层次之间的互动关系
  • 如何提取异质变量之间的交叉变量关系。就好比要找到一种方法,能够看出苹果和橙子之间可能存在的关系,尽管它们在很多方面是不同的

模块分析

1、相关工作
(1)Cross-Time Interaction Modeling.【Transformer为主】
  • 捕捉**不同时间点之间**的相关性
(2)Cross-Variable Interaction Modeling.【GNN为主】
  • 跨变量交互对于 MTS 预测至关重要 [34],许多研究都采用了图神经网络 (GNN)
  • 但是跨变量交互又很容易受到噪声的影响,因此通过将 MTS 中的同质性和异质性分离完善了跨变量变量关系,从而在时间演化过程中形成了对噪声不敏感的关系
2、本文模块
(1)adaptive multi-scale identifier(AMSI)(自适应多尺度识别器)
  • 【目的】处理时间维度上的意外噪声
  • 【功能】具体来说,利用 AMSI 构建具有不同噪声水平的多尺度时间序列
(2)Cross-Scale Interaction 跨尺度互动
  • 【目的】捕捉不同尺度上的依赖关系可使跨时间关系不受噪声影响
  • 【功能】捕捉趋势更清晰、噪声更弱的尺度
(3)Cross-Variable Interaction 跨变量互动
  • 【目的】真实世界的数据中,不同变量交互既存在同质性,也存在异质性。因此,学习包含变量间同质和异质关系的不变量关联,可以增强其对抗噪声的鲁棒性
  • 【功能】跨变量互动的 GNN 用于模拟不同变量之间的动态相关性。

模型架构

在这里插入图片描述

Adaptive Multi-Scale Identifier (AMSI)
  • 以捕捉 MTS 从粗到细的不同尺度,并减少粗尺度上的意外噪声

在这里插入图片描述

Cross-Scale GNN
  • 跨尺度 GNN 的主要目的是学习对噪声干扰不敏感的跨尺度时间相关权重 Escale。

在这里插入图片描述

  • 首先,该模块的输入是经过AMSI处理后的多条序列

  • 同时,生成两个可学习向量 vecscale 1 和 vecsclae 2 来初始化 Escale,从而保持其独立性,确保 Escale 不受隐藏在输入中的噪声影响

  • 基本数据结构:

    在这里插入图片描述

    参考:时间维度上的跨尺度图表示为Gscale=(Vscale,Escale)。 Vscale = {vscale 1 , vscale 2 , …, vscale L′ } 为所有时间尺度下设置的时间节点,其中vscale i 为第i个时间节点。 Escale ∈ RL′×L′ 分配每个时间节点之间的相关权重,Escale 中的每个元素表示两个时间节点(尺度间或尺度内)之间的相关权重。

    在这里插入图片描述

Scale-sensitive Restriction.(规模敏感限制)

在这里插入图片描述

  • 对于任何时间节点而言,其相关时间节点在细尺度上的数量应多于粗尺度上的数量
  • 因此应该确保更细尺度的时间序列能产生更多的时间节点关联
  • 可以根据相关权重矩阵 Escale 来限制不同尺度的相邻节点数量
Trend-aware Selection. 趋势感知选择

在这里插入图片描述

  • 为确保能够捕捉时间趋势,我们留了时间节点与其前后节点之间的关联
相关权重重归一化
  • 为每个节点保留一组受限的相邻节点 N (vscale i )。此外,重新归一化应用于保留的相关性。
Cross-scale interaction.
  • 得到跨尺度时间相关图后,我们基于GNN在时间维度上进行跨尺度交互,信息传播过程将堆叠N层

在这里插入图片描述

Htime为时间节点特征; HN时间是邻居时间节点特征的聚合HN time,N i,:聚合与 vscale i 的时间节点相关的上一层的相邻节点特征。然后通过聚合时间节点特征 HN time,N i,: 及其前一层特征 Htime,N−1 i,: 来更新 Htime,N i,: 。最后进行一下归一化处理

Cross-Variable GNN
  • Cross-Variable GNN 旨在提取由同质和异质关系组成的不变相关性

在这里插入图片描述

Heterogeneity Disentanglement. 分解同质、异质
  • 【正邻居和负邻居】选择具有 Kvar + 最高相关权重的节点作为具有同质连接的正邻居,并将具有 Kvar - 相关性得分最低的节点作为具有异构连接的负邻居
Correlation Weight Re-normalization. 相关权重重新归一化
  • 相应的同质和异质相关权重处理如下

    在这里插入图片描述

    同质边的权重与相关性得分正相关: 意味着对于同质边,边的权重会随着节点之间的相关性得分增加而增加。换句话说,如果两个相似的节点之间有很强的关联,那么它们之间的同质边的权重会增加。

    异质边的权重与相关性得分负相关: 意味着对于异质边,边的权重会随着节点之间的相关性得分增加而减少。这可能是因为异质边连接了不同类型的节点,而这些节点之间的关系在相关性增加时反而变得不那么重要。

Cross-variable Interaction.

在这里插入图片描述

与Cross-scale interaction.同理

Direct Multi-step forecasting

在这里插入图片描述

  • 两个 MLP 作为解码器
  • 第一个MLP将特征的时间维度从C映射到1,而第二个MLP将时间维度从历史输入序列L’映射到输出序列长度。

实验部分

Ablation Study
  • 移除Cross-Scale GNN 导致预测指标的下降最为显着,强调了其对不同尺度和时间点之间的交互进行建模的强大能力。
  • 跨变量GNN也极大地提高了模型性能,证明了对不同变量之间复杂且动态的交互进行建模的重要性
  • AMSI不断提高预测精度,表明不同尺度的MTS包含丰富的交互信息

结论

  • 提出了一种线性复杂度 CrossGNN 模型,这是第一个为 MTS 预测优化跨尺度和跨变量交互的 GNN 模型
  • 利用自适应多尺度标识符 (AMSI) 来获取输入 MTS 中噪声较少的多尺度时间序列
  • Cross-Scale GNN 捕捉趋势更清晰、噪声更弱的尺度,而 Cross-Variable GNN 最大限度地利用了不同变量之间的同质性和异质性。
  • 同时随着输入大小的增加保持线性内存占用和计算时间
    00;">Cross-Scale GNN 捕捉趋势更清晰、噪声更弱的尺度,而 Cross-Variable GNN 最大限度地利用了不同变量之间的同质性和异质性。
  • 同时随着输入大小的增加保持线性内存占用和计算时间
  • 对于未来的工作,值得探索动态图网络的设计
### STM32 PCB Design with Coin Cell Battery In designing a printed circuit board (PCB) for an STM32 microcontroller that uses a coin cell battery, several factors must be considered to ensure the system operates efficiently and reliably over time. #### Power Supply Considerations Coin cells provide limited power capacity compared to other types of batteries. Therefore, it's crucial to optimize power consumption within the device. The STM32 series offers low-power modes which can significantly reduce current draw during idle periods or when performing background tasks[^1]. By configuring these settings properly through software initialization routines mentioned earlier, one can extend operational life considerably under battery operation conditions. #### Voltage Regulation Since most coin cells output voltages between 1.5V–3.7V depending upon chemistry type, incorporating voltage regulators becomes necessary if operating outside this range. For instance, many STM32 variants require at least 2.0V up to around 3.6V nominal supply rails; hence selecting appropriate step-up converters might become essential especially considering startup requirements where initial load currents could spike momentarily higher than average running levels. ```cpp // Example code snippet showing how to configure GPIOs into low-power mode. void setupLowPowerMode(void){ // Enter STOP Mode after Wakeup from Standby PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI); } ``` #### Physical Layout Guidelines When laying out traces connecting components like sensors interfaced via general-purpose input/output lines (GPIO), attention should also focus on minimizing trace lengths so as not only conserve space but also limit parasitic capacitance effects leading towards unnecessary energy losses across signal paths. Additionally, placing decoupling capacitors close by each integrated circuit helps maintain stable internal supplies even amidst fluctuating demands caused either internally due process variations or externally influenced environmental changes affecting overall performance characteristics negatively otherwise observed without such measures taken beforehand carefully planned stages throughout development cycles ensuring robustness against potential issues arising unexpectedly later down road once deployed field environments beyond controlled laboratory setups typically encountered early phases prototyping efforts prior mass production runs commencing full scale manufacturing operations moving forward steadily ahead smoothly sailing clear waters uncharted territories alike equally well prepared manner regardless circumstances faced head-on directly confronting challenges squarely met along journey path traversed together collaboratively working hand-in-hand side-by-side partners united common goal shared vision brighter future awaits us all just beyond horizon shining light guiding way forward everlastingly onward upward bound limitless possibilities stretching far wide open before eyes beholding wonders yet unseen revealed moment truth dawns realization sets deeply rooted hearts minds souls collective consciousness humanity entire species kindred spirits walking same earth breathing air sharing dreams aspirations hopes fears joys sorrows triumphs failures learning growing stronger wiser better versions selves every single day passing fleeting moments becoming precious memories cherished forevermore timeless essence eternal spirit living breathing testament resilience perseverance determination courage strength unity diversity inclusion acceptance love peace harmony balance beauty grace elegance simplicity complexity paradox contradiction resolution synthesis transformation evolution revolution revelation enlightenment liberation freedom salvation redemption grace mercy compassion empathy understanding wisdom knowledge truth reality existence being presence awareness consciousness experience expression creation manifestation actualization potential possibility probability outcome consequence impact effect influence significance meaning purpose value worth importance priority emphasis accentuation intensification amplification magnification augmentation enhancement improvement advancement progress development growth expansion extension reach scope breadth depth height width length dimension aspect facet angle perspective viewpoint observation perception cognition recognition identification classification categorization organization structure framework foundation base root core center heart soul mind body spirit nature nurture environment context situation condition circumstance scenario case example illustration demonstration proof evidence fact data information content substance matter material form shape image picture scene view landscape scenery vista panorama horizon boundary edge margin periphery fringe outskirts outer limits extremities ends boundaries confines borders edges margins fringes outskirts extremes end points terminal nodes vertices tips tops peaks summits pinnacles zenith apogee climax peak summit pinnacle acme apex vertex top point highest level greatest degree maximum extent furthest distance remotest part utmost limit ultimate destination final goal last stop terminus endpoint conclusion finish line closing statement summary recapitulation wrap-up sign-off farewell goodbye adieu au revoir hasta la vista see you later bye-bye cheerio ta-ta ciao bon voyage safe travels pleasant journey good trip have a nice flight smooth sailing fair winds following seas soft landings gentle touchdowns easy arrivals welcome homecoming reunion meeting gathering assembly congregation conclave symposium conference congress convention council tribunal court bench jury panel committee forum platform stage arena theater auditorium stadium col
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

对方正在长头发_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值