CrossGNN Confronting Noisy Multivariate Time Series Via Cross Interaction Refinement 论文解读

CrossGNN Confronting Noisy Multivariate Time Series Via Cross Interaction Refinement 论文解读

title: Confronting Noisy Multivariate Time Series Via Cross Interaction Refinement 【用交叉作用细化方法对抗多变量时间序列的噪声

背景词汇解释

  • 时间波动:某一变量随着时间的变化而变化,这种波动可能是由于有一定规律的特征所影响,也有可能是收到噪声的影响而波动。
  • 同质性和异质性:
    • 同质性:某个系统、群体或数据集中,个体或元素之间在某个方面相似或具有相同的性质、特征或状态
    • 异质性:所考虑的不同变量之间存在差异或多样性。这种异质性可以表现为多个方面,包括变量类型、度量尺度、分布特征等

问题引入

  • 我们发现,现有方法**无法很好地处理时间波动和变量之间的异质性问题**
  • 为解决上述问题,我们提出了 CrossGNN 模型,这是一种**线性复杂 GNN 模型**,用于完善 MTS 的跨尺度跨变量交互作用。
    • 处理时间维度上的意外噪声:
      利用自适应多尺度标识符(AMSI)来构建具有较低噪声的多尺度时间序列
    • 提取趋势更清晰、噪声更弱的尺度;充分利用跨尺度变量的同质性和异质性
      提出了一种跨尺度 GNN
    • 复杂度:
      线性时间复杂度
  • 基于Transformer的自注意力模型的缺陷:
    • 自注意力机制的模型太过于依赖上下文的信息,导致了只要有噪声扰动
    • 受到噪声影响的点,反而被分到了高的注意力分数,从而导致虚假的跨时间相关性
    • 趋势更清晰、噪声更弱的刻度将被赋予更多的边缘权重
  • 由于噪声干扰的影响,提取不同尺度的变量的交互作用非常困难
  • 变量之间的同质和异质关系没有利用好

请添加图片描述

因此:关键问题是:

  • 如何捕捉对意外输入噪声不敏感的跨尺度交互作用:就像在电视上看清晰画面,我们希望找到一种方法,不受电视信号突然干扰(噪声)的影响,仍然能够理解不同层次之间的互动关系
  • 如何提取异质变量之间的交叉变量关系。就好比要找到一种方法,能够看出苹果和橙子之间可能存在的关系,尽管它们在很多方面是不同的

模块分析

1、相关工作
(1)Cross-Time Interaction Modeling.【Transformer为主】
  • 捕捉**不同时间点之间**的相关性
(2)Cross-Variable Interaction Modeling.【GNN为主】
  • 跨变量交互对于 MTS 预测至关重要 [34],许多研究都采用了图神经网络 (GNN)
  • 但是跨变量交互又很容易受到噪声的影响,因此通过将 MTS 中的同质性和异质性分离完善了跨变量变量关系,从而在时间演化过程中形成了对噪声不敏感的关系
2、本文模块
(1)adaptive multi-scale identifier(AMSI)(自适应多尺度识别器)
  • 【目的】处理时间维度上的意外噪声
  • 【功能】具体来说,利用 AMSI 构建具有不同噪声水平的多尺度时间序列
(2)Cross-Scale Interaction 跨尺度互动
  • 【目的】捕捉不同尺度上的依赖关系可使跨时间关系不受噪声影响
  • 【功能】捕捉趋势更清晰、噪声更弱的尺度
(3)Cross-Variable Interaction 跨变量互动
  • 【目的】真实世界的数据中,不同变量交互既存在同质性,也存在异质性。因此,学习包含变量间同质和异质关系的不变量关联,可以增强其对抗噪声的鲁棒性
  • 【功能】跨变量互动的 GNN 用于模拟不同变量之间的动态相关性。

模型架构

在这里插入图片描述

Adaptive Multi-Scale Identifier (AMSI)
  • 以捕捉 MTS 从粗到细的不同尺度,并减少粗尺度上的意外噪声

在这里插入图片描述

Cross-Scale GNN
  • 跨尺度 GNN 的主要目的是学习对噪声干扰不敏感的跨尺度时间相关权重 Escale。

在这里插入图片描述

  • 首先,该模块的输入是经过AMSI处理后的多条序列

  • 同时,生成两个可学习向量 vecscale 1 和 vecsclae 2 来初始化 Escale,从而保持其独立性,确保 Escale 不受隐藏在输入中的噪声影响

  • 基本数据结构:

    在这里插入图片描述

    参考:时间维度上的跨尺度图表示为Gscale=(Vscale,Escale)。 Vscale = {vscale 1 , vscale 2 , …, vscale L′ } 为所有时间尺度下设置的时间节点,其中vscale i 为第i个时间节点。 Escale ∈ RL′×L′ 分配每个时间节点之间的相关权重,Escale 中的每个元素表示两个时间节点(尺度间或尺度内)之间的相关权重。

    在这里插入图片描述

Scale-sensitive Restriction.(规模敏感限制)

在这里插入图片描述

  • 对于任何时间节点而言,其相关时间节点在细尺度上的数量应多于粗尺度上的数量
  • 因此应该确保更细尺度的时间序列能产生更多的时间节点关联
  • 可以根据相关权重矩阵 Escale 来限制不同尺度的相邻节点数量
Trend-aware Selection. 趋势感知选择

在这里插入图片描述

  • 为确保能够捕捉时间趋势,我们留了时间节点与其前后节点之间的关联
相关权重重归一化
  • 为每个节点保留一组受限的相邻节点 N (vscale i )。此外,重新归一化应用于保留的相关性。
Cross-scale interaction.
  • 得到跨尺度时间相关图后,我们基于GNN在时间维度上进行跨尺度交互,信息传播过程将堆叠N层

在这里插入图片描述

Htime为时间节点特征; HN时间是邻居时间节点特征的聚合HN time,N i,:聚合与 vscale i 的时间节点相关的上一层的相邻节点特征。然后通过聚合时间节点特征 HN time,N i,: 及其前一层特征 Htime,N−1 i,: 来更新 Htime,N i,: 。最后进行一下归一化处理

Cross-Variable GNN
  • Cross-Variable GNN 旨在提取由同质和异质关系组成的不变相关性

在这里插入图片描述

Heterogeneity Disentanglement. 分解同质、异质
  • 【正邻居和负邻居】选择具有 Kvar + 最高相关权重的节点作为具有同质连接的正邻居,并将具有 Kvar - 相关性得分最低的节点作为具有异构连接的负邻居
Correlation Weight Re-normalization. 相关权重重新归一化
  • 相应的同质和异质相关权重处理如下

    在这里插入图片描述

    同质边的权重与相关性得分正相关: 意味着对于同质边,边的权重会随着节点之间的相关性得分增加而增加。换句话说,如果两个相似的节点之间有很强的关联,那么它们之间的同质边的权重会增加。

    异质边的权重与相关性得分负相关: 意味着对于异质边,边的权重会随着节点之间的相关性得分增加而减少。这可能是因为异质边连接了不同类型的节点,而这些节点之间的关系在相关性增加时反而变得不那么重要。

Cross-variable Interaction.

在这里插入图片描述

与Cross-scale interaction.同理

Direct Multi-step forecasting

在这里插入图片描述

  • 两个 MLP 作为解码器
  • 第一个MLP将特征的时间维度从C映射到1,而第二个MLP将时间维度从历史输入序列L’映射到输出序列长度。

实验部分

Ablation Study
  • 移除Cross-Scale GNN 导致预测指标的下降最为显着,强调了其对不同尺度和时间点之间的交互进行建模的强大能力。
  • 跨变量GNN也极大地提高了模型性能,证明了对不同变量之间复杂且动态的交互进行建模的重要性
  • AMSI不断提高预测精度,表明不同尺度的MTS包含丰富的交互信息

结论

  • 提出了一种线性复杂度 CrossGNN 模型,这是第一个为 MTS 预测优化跨尺度和跨变量交互的 GNN 模型
  • 利用自适应多尺度标识符 (AMSI) 来获取输入 MTS 中噪声较少的多尺度时间序列
  • Cross-Scale GNN 捕捉趋势更清晰、噪声更弱的尺度,而 Cross-Variable GNN 最大限度地利用了不同变量之间的同质性和异质性。
  • 同时随着输入大小的增加保持线性内存占用和计算时间
    00;">Cross-Scale GNN 捕捉趋势更清晰、噪声更弱的尺度,而 Cross-Variable GNN 最大限度地利用了不同变量之间的同质性和异质性。
  • 同时随着输入大小的增加保持线性内存占用和计算时间
  • 对于未来的工作,值得探索动态图网络的设计
  • 23
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

对方正在长头发_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值