FourierGNN:Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective 论文解读

文章探讨了如何通过FourierGNN,一种基于纯图的模型,重新思考多变量时间序列预测,消除传统模型中时空分离的问题。该方法利用超变量图统一表示时空依赖,通过傅里叶图算子捕获时变关系,实现高效预测性能。
摘要由CSDN通过智能技术生成

FourierGNN:Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective

title: Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective 重新研究图网络对多变量预测的问题

引入

  • 【之前的问题】对于多变量时序预测任务:之前都是把时序间(空间预测),时序内(时间预测)分别放入图神经网络与LSTM或RNN为基的模型,最后再把这两种模型进行集成,这样的缺点就是:
    • 两个网络的不确定性兼容性给手工模型设计带来了额外负担
    • 而且,单独的时空建模自然违背了现实世界中统一的时空相互依存关系,这在很大程度上影响了预测性能
  • 【关键问题】在 MTS 预测中,核心挑战是建立序列内(时间)依赖关系模型,同时捕捉序列间(空间)相关性
  • 【提出了】超变量图(hypervariate graph)这样的数据结构,并创造了:FourierGNN
    • 它将每个序列值(不考虑变量或时间戳)视为一个图节点,并将滑动窗口表示为时空全连接图
    • 将时空统一起来,将【经典MTS预测】----转化为---->【超变量图的预测】
    • 傅里叶图神经网络(FourierGNN)【由FGO的堆叠】
    • 揭示了 FGO 在时域上与图卷积的等价性
  • 【之前的方法】
    • 基于RNN系列的:更关注时间(时序内)
    • 基于GNN系列的:更关注空间(时序间)
      • 另外:先前的model严重依赖于预定义的图结构来指定空间相关性,而事实上这种图结构无法捕捉空间动态,即随时间变化的空间相关性模式
  • 【本文】
    • 探索了直接应用图网络进行预测的相反方向,并研究了一个有趣的问题:即使没有时间网络,纯图网络能否捕捉空间动态和时间依赖关系?
    • 超变量图的核心思想是构建一个时空全连接结构。【将多变量序列的序列内和序列间相关性表述为超变量图中的纯节点-节点依赖关系
    • 提出了一种新颖的架构–傅立叶图神经网络(FourierGNN),从纯图的角度预测 MTS。
    • 提出了理论分析,以证明 FGO 等同于时域中的图卷积、

理论支撑

为什么图的节点都是全连接的?

由于时滞效应,Xt 的元素在空间或时间上相互关联,因此我们假设超变量图 Gt 中的所有节点都是全连接的

reference

在系统中存在一定延迟或滞后时间时所产生的影响

时滞效应可能导致系统的不稳定性、振荡或者性能下降。时滞可以来自于传感器的测量时间、信号传输的延迟、执行控制动作的延迟等多个方面。处理时滞是控制工程中一个复杂而重要的问题,通常需要采用专门的控制策略来抵消或减轻时滞的影响。

为什么FGO使得时间复杂度由n×d×d 变为了d×d
  • 在全连接超变图的情况下,节点数 n 是固定的,不会随着图的规模而改变【相当于常量级不影响复杂度】。相比之下,一般的图可能具有可变的节点数【这时复杂度为n×d×d】,这就需要动态地调整计算图的结构,增加一些开销

    在这里插入图片描述

残差连接
  • 其中,S0、W0、A0 为同一矩阵,我们在 k = 0 处采用相同的激活,以获得残差 F(X)。

在这里插入图片描述

  • 上述公式:FourierGNN 的核心操作是对非线性激活函数进行递归乘法求和
傅立叶图网络与其他图网络的比较
Domain

GAT 在时域中执行操作,而 GCN 和 FourierGNN 则在傅立叶空间中执行操作。不过,GCN 通过图傅里叶变换 (GFT) 实现变换,而 FourierGNN 则利用离散傅里叶变换 (DFT)。

Information diffusion:

FourierGNN 和 GCN 通过卷积邻居节点来更新节点信息。与 GCN 不同的是,FourierGNN 在不同的扩散步骤中为邻居节点分配不同的重要性

网络架构分析

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

实验部分

消融实验

说明了:模型扩展与嵌入、动态FGO、残差处理、不仅仅采用最后一层输出这四方面的重要性

在这里插入图片描述

通过傅立叶网络学习的时空表征可视化

为了展示 FourierGNN 的时间相关性学习能力,我们将不同变量的时间相邻矩阵可视化

结果表明,FourierGNN 可以为每个县学习到不同的时间模式,这表明超变量图可以编码丰富且具有区分性的时间依赖关系

通过 FourierGNN 学习到的空间表征可视化

探测器(7、8、9、11、13、18)之间的物理距离非常近,因此在热图中它们之间的相关性值很高;2) 探测器 4、14 和 16 的总体相关性值较小,因为它们远离其他探测器;3) 然而,与探测器 14 和 16 相比,探测器 4 与其他探测器(如 7、8、9)的相关性值稍高、7、8、9,这是因为虽然它们相距甚远,但探测器 4、7、8、9 位于同一条道路上

结果验证了**超变量图结构可以表示极具解释性的相关关系**

将 FourierGNN 每一层的输出可视化

可视化结果表明,FGO 可以自适应地有效捕捉重要模式,同时去除噪音,从而学习出具有辨别力的模型。

在这里插入图片描述

可视化了不同时间戳的空间相关性

为了研究 FourierGNN 捕捉变量间时变依赖关系的能力

结果表明,FourierGNN 能够有效地关注数据的时间变化。

结果与小结

  • 纯图的角度将图网络直接应用于 MTS 预测(建立了一个超变量图,将每个序列值视为一个图节点,统一考虑时空动态)【克服以往空间和时间模型分离的问题】
  • 超变量图上对时间序列预测进行了表述,并通过堆叠傅立叶图算子(FGO)在傅立叶空间进行矩阵乘法,提出了 FourierGNN,它能以更低的复杂度容纳足够的学习表现力。
  • FourierGNN 更高的效率和更少的参数实现了最先进的性能,而且超变量图结构在编码时空相互依赖关系方面表现出强大的能力
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

对方正在长头发_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值